Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /

IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

See all formats and pricing
More options …
Volume 19, Issue 1 (Mar 2014)

CD44 and CD24 cannot act as cancer stem cell markers in human lung adenocarcinoma cell line A549

Raheleh Roudi / Zahra Madjd / Marzieh Ebrahimi / Fazel Samani / Ali Samadikuchaksaraei
Published Online: 2014-03-26 | DOI: https://doi.org/10.2478/s11658-013-0112-1


Cancer stem cells (CSCs) are subpopulations of tumor cells that are responsible for tumor initiation, maintenance and metastasis. Recent studies suggested that lung cancer arises from CSCs. In this study, the expression of potential CSC markers in cell line A549 was evaluated. We applied flow cytometry to assess the expression of putative stem cell markers, including aldehyde dehydrogenase 1 (ALDH1), CD24, CD44, CD133 and ABCG2. Cells were then sorted according to the expression of CD44 and CD24 markers by fluorescence-activated cell sorting (FACS) Aria II and characterized using their clonogenic and sphere-forming capacity. A549 cells expressed the CSC markers CD44 and CD24 at 68.16% and 54.46%, respectively. The expression of the putative CSC marker ALDH1 was 4.20%, whereas the expression of ABCG2 and CD133 was 0.93%. Double-positive CD44/133 populations were rare. CD44+/24+ and CD44+/CD24−/low subpopulations respectively exhibited 64% and 27.92% expression. The colony-forming potentials in the CD44+/CD24+ and CD44+/CD24−/low subpopulations were 84.37 ± 2.86% and 90 ± 3.06%, respectively, while the parental A549 cells yielded 56.65 ± 2.33% using the colony-formation assay. Both isolated subpopulations formed spheres in serumfree medium supplemented with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). CD44 and CD24 cannot be considered potential markers for isolating lung CSCs in cell line A549, but further investigation using in vivo assays is required.

Keywords: Cancer stem cells; Lung cancer; Cell line A549; Colony-formation assay; Sphere-formation assay; CD44; CD24; CD133; ALDH1; ABCG-2

  • [1] Travis, W.D. Pathology of lung cancer. Clin. Chest. Med. 32 (2011) 669–692. http://dx.doi.org/10.1016/j.ccm.2011.08.005CrossrefGoogle Scholar

  • [2] Boman, B.M. and Wicha, M.S. Cancer stem cells: a step toward the cure. J. Clin. Oncol. 26 (2008) 2795–2799. http://dx.doi.org/10.1200/JCO.2008.17.7436CrossrefGoogle Scholar

  • [3] Jordan, C.T., Guzman, M.L. and Noble, M. Cancer stem cells. N. Engl. J. Med. 355 (2006) 1253–1261. http://dx.doi.org/10.1056/NEJMra061808CrossrefGoogle Scholar

  • [4] Reya, T., Morrison, S.J., Clarke, M.F. and Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature 414 (2001) 105–111. http://dx.doi.org/10.1038/35102167CrossrefGoogle Scholar

  • [5] Rivera, C., Rivera, S., Loriot, Y., Vozenin, M.C. and Deutsch, E. Lung cancer stem cell: new insights on experimental models and preclinical data. J. Oncol. 2011 (2011) 549181. http://dx.doi.org/10.1155/2011/549181CrossrefGoogle Scholar

  • [6] Sun, S., Schiller, J.H., Spinola, M. and Minna, J.D. New molecularly targeted therapies for lung cancer. J. Clin. Invest. 117 (2007) 2740–2750. http://dx.doi.org/10.1172/JCI31809CrossrefGoogle Scholar

  • [7] Bertolini, G., Roz, L., Perego, P., Tortoreto, M., Fontanella, E., Gatti, L., Pratesi, G., Fabbri, A., Andriani, F., Tinelli, S., Roz, E., Caserini, R., Lo Vullo, S., Camerini, T., Mariani, L., Delia, D., Calabrò, E., Pastorino, U. and Sozzi, G. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc. Natl. Acad. Sci. USA 106 (2009)16281–16286. http://dx.doi.org/10.1073/pnas.0905653106CrossrefGoogle Scholar

  • [8] Eramo, A., Lotti, F., Sette, G., Pilozzi, E., Biffoni, M., Di Virgilio, A., Conticello, C., Ruco, L., Peschle, C. and De Maria, R. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 15 (2007) 504–514. http://dx.doi.org/10.1038/sj.cdd.4402283Web of ScienceCrossrefGoogle Scholar

  • [9] Piechaczek, C. CD133. J. Biol. Regul. Homeost. Agents 15 (2001) 101–102. Google Scholar

  • [10] Chen, Y.C., Hsu, H.S., Chen, Y.W., Tsai, T.H., How, C.K., Wang, C.Y., Hung, S.C., Chang, Y.L., Tsai, M.L., Lee, Y.Y., Ku, H.H. and Chiou, S.H. Oct-4 expression maintained cancer stem-like properties in lung cancerderived CD133-positive cells. PLoS One 3 (2008) e2637. http://dx.doi.org/10.1371/journal.pone.0002637CrossrefGoogle Scholar

  • [11] Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J. and Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100 (2003) 3983–3988. http://dx.doi.org/10.1073/pnas.0530291100CrossrefGoogle Scholar

  • [12] Leung, E.L., Fiscus, R.R., Tung, J.W., Tin, V.P., Cheng, L.C., Sihoe, A.D., Fink, L.M., Ma, Y. and Wong, M.P. Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One 5 (2010) e14062. http://dx.doi.org/10.1371/journal.pone.0014062CrossrefGoogle Scholar

  • [13] Naor, D., Wallach-Dayan, S.B., Zahalka, M.A. and Sionov, R.V. Involvement of CD44, a molecule with a thousand faces, in cancer dissemination. Semin. Cancer Biol. 18 (2008) 260–267. http://dx.doi.org/10.1016/j.semcancer.2008.03.015CrossrefWeb of ScienceGoogle Scholar

  • [14] Hurt, E.M., Kawasaki, B.T., Klarmann, G.J., Thomas, S.B. and Farrar, W.L. CD44+ CD24 — prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br. J. Cancer 98 (2008) 756–765. http://dx.doi.org/10.1038/sj.bjc.6604242CrossrefGoogle Scholar

  • [15] Yeung, T.M., Gandhi, S.C., Wilding, J.L., Muschel, R. and Bodmer, W.F. Cancer stem cells from colorectal cancer-derived cell lines Proc. Natl. Acad. Sci. USA 107 (2010) 3722–3727. http://dx.doi.org/10.1073/pnas.0915135107CrossrefGoogle Scholar

  • [16] Yoshida, A., Hsu, L. and Dave, V. Retinal oxidation activity and biological role of human cytosolic aldehyde dehydrogenase. Enzyme 46 (1992) 239–244. Google Scholar

  • [17] Jiang, F., Qiu, Q., Khanna, A., Todd, N.W., Deepak, J., Xing, L., Wang, H., Liu, Z., Su, Y., Stass, S.A. and Ktz, R.L. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol. Cancer Res. 7 (2009) 330–338. http://dx.doi.org/10.1158/1541-7786.MCR-08-0393CrossrefWeb of ScienceGoogle Scholar

  • [18] Ucar, D., Cogle, C.R., Zucali, J.R., Ostmark, B., Scott, E.W., Zori, R., Gray, B.A. and Moreb, J.S. Aldehyde dehydrogenase activity as a functional marker for lung cancer. Chem. Biol. Interact 178 (2009) 48–55. http://dx.doi.org/10.1016/j.cbi.2008.09.029Web of ScienceCrossrefGoogle Scholar

  • [19] Ding, X.W., Wu, J.H. and Jiang, C.P. ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci. 86 (2010) 631–637. http://dx.doi.org/10.1016/j.lfs.2010.02.012Web of ScienceCrossrefGoogle Scholar

  • [20] Ho, M.M., Ng, A.V., Lam, S. and Hung, J.Y. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 67 (2007) 4827–4833. http://dx.doi.org/10.1158/0008-5472.CAN-06-3557CrossrefGoogle Scholar

  • [21] Charloux, A., Quoix, E., Wolkove, N., Small, D., Pauli, G. and Kreisman, H. The increasing incidence of lung adenocarcinoma: reality or artefact? A review of the epidemiology of lung adenocarcinoma. Int. J. Epidemiol. 26 (1997) 14–23. http://dx.doi.org/10.1093/ije/26.1.14CrossrefGoogle Scholar

  • [22] Sung, J.M., Cho, H.J., Yi, H., Lee, C.H., Kim, H.S., Kim, D.K., Abd El-Aty, A.M., Kim, J.S., Landowski, C.P., Hediger, M.A. and Chin, H.C. Characterization of a stem cell population in lung cancer A549 cells. Biochem. Biophys. Res. Commun. 371 (2008) 163–167. http://dx.doi.org/10.1016/j.bbrc.2008.04.038Google Scholar

  • [23] Barrandon, Y. and Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl. Acad. Sci. USA 84 (1987) 2302–2306. http://dx.doi.org/10.1073/pnas.84.8.2302CrossrefGoogle Scholar

  • [24] Li, H., Chen, X., Calhoun-Davis, T., Claypool, K. and Tang, D.G. PC3 human prostate carcinoma cell holoclones contain self-renewing tumorinitiating cells. Cancer Res. 68 (2008) 1820–1825. http://dx.doi.org/10.1158/0008-5472.CAN-07-5878CrossrefGoogle Scholar

  • [25] Zhou, Z.H., Ping, Y.F., Yu, S.C., Yi, L., Yao, X.H., Chen, J.H., Cui, Y.H. and Bian, X-W. A novel approach to the identification and enrichment of cancer stem cells from a cultured human glioma cell line. Cancer Lett. 281 (2009) 92–99. http://dx.doi.org/10.1016/j.canlet.2009.02.033CrossrefWeb of ScienceGoogle Scholar

  • [26] Tan, L., Sui, X., Deng, H. and Ding, M. Holoclone forming cells from pancreatic cancer cells enrich tumor initiating cells and represent a novel model for study of cancer stem cells. PLoS One 6 (2011) e23383. http://dx.doi.org/10.1371/journal.pone.0023383CrossrefWeb of ScienceGoogle Scholar

  • [27] Franken, N.A., Rodermond, H.M., Stap, J., Haveman, J. and Van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 1 (2006) 2315–2319. http://dx.doi.org/10.1038/nprot.2006.339CrossrefGoogle Scholar

  • [28] Pastrana, E., Silva-Vargas, V. and Doetsch, F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8 (2011) 486–498. http://dx.doi.org/10.1016/j.stem.2011.04.007Web of ScienceCrossrefGoogle Scholar

  • [29] Friedrich, J., Seidel, C., Ebner, R. and Kunz-Schughart, L.A. Spheroid-based drug screen: considerations and practical approach. Nat. Protoc. 4 (2009) 309–324. http://dx.doi.org/10.1038/nprot.2008.226Web of ScienceCrossrefGoogle Scholar

  • [30] Hill, R.P. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res. 66 (2006) 1891–1895. http://dx.doi.org/10.1158/0008-5472.CAN-05-3450CrossrefGoogle Scholar

  • [31] Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D. and Dirks, P.B. Identification of human brain tumour initiating cells. Nature 432 (2004) 396–401. http://dx.doi.org/10.1038/nature03128CrossrefWeb of ScienceGoogle Scholar

  • [32] Meng, X., Li, M., Wang, X., Wang, Y. and Ma, D. Both CD133+ and CD133 — subpopulations of A549 and H446 cells contain cancer-initiating cells. Cancer Sci. 100 (2009) 1040–1046. http://dx.doi.org/10.1111/j.1349-7006.2009.01144.xWeb of ScienceGoogle Scholar

  • [33] Akunuru, S, Zhai, Q.J. and Zheng, Y. Non-small cell lung cancer stem/progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit plasticity. Cell Death Dis. 3 (2012) e352. http://dx.doi.org/10.1038/cddis.2012.93CrossrefGoogle Scholar

  • [34] Stuelten, C.H., Mertins, S.D., Busch, J.I., Gowens, M., Scudiero, D.A., Burkett, M.W., Hite, K.M., Alley, M., Hollingshead, M., Shoemaker, R.H. and Niederhuber, J.E. Complex display of putative tumor stem cell markers in the NCI60 tumor cell line panel. Stem Cells 28 (2010) 649–660. http://dx.doi.org/10.1002/stem.324Web of ScienceGoogle Scholar

  • [35] Levina, V., Marrangoni, A.M., DeMarco, R., Gorelik, E. and Lokshin, A.E. Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One 3 (2008) e3077. http://dx.doi.org/10.1371/journal.pone.0003077CrossrefGoogle Scholar

  • [36] Tirino, V., Camerlingo, R., Franco, R., Malanga, D., La Rocca, A., Viglietto, G., Rocco, G. and Pirozzi, G. The role of CD133 in the identification and characterisation of tumour-initiating cells in non-smallcell lung cancer. Eur. J. Cardiothorac. Surg. 36 (2009) 446–453. http://dx.doi.org/10.1016/j.ejcts.2009.03.063Google Scholar

  • [37] Fargeas, C., Huttner, W. and Corbeil, D. Nomenclature of prominin-1 (CD133) splice variants-an update. Tissue Antigens 69 (2007) 602–606. http://dx.doi.org/10.1111/j.1399-0039.2007.00825.xWeb of ScienceCrossrefGoogle Scholar

  • [38] Shmelkov, S.V., St Clair, R., Lyden, D. and Rafii, S. AC133/CD133/Prominin-1. Int. J. Biochem. Cell Biol. 37 (2005) 715–719. http://dx.doi.org/10.1016/j.biocel.2004.08.010Google Scholar

  • [39] Wang, P., Gao, Q., Suo, Z., Munthe, E., Solberg, S., Ma, L., Wang, M., Westerdaal, N.A., Kvalheim, G. and Gaudernack, G. Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One 8 (2013) e57020. http://dx.doi.org/10.1371/journal.pone.0057020CrossrefGoogle Scholar

  • [40] Kim, J., Jung, J., Lee S.J., Lee J.S. and Park M.J. Cancer stem-like cells persist in established cell lines through autocrine activation of EGFR signaling. Oncol. Lett. 3 (2012) 607–612. Web of ScienceGoogle Scholar

  • [41] Kelly, J.J., Stechishin, O., Chojnacki, A., Lun, X., Sun, B., Senger, D.L., Forsyth, P., Auer, R.N., Dunn, J.F., Cairncross, J.G., Parney I.F., and Weiss, S. Proliferation of human glioblastoma stem cells occurs independently of exogenous mitogens. Stem Cells 27 (2009) 1722–1733. http://dx.doi.org/10.1002/stem.98Web of ScienceCrossrefGoogle Scholar

  • [42] Li, G., Chen, Z., Hu, Y.D., Wei, H., Li, D., Ji, H. and Wang, D-L. Autocrine factors sustain glioblastoma stem cell self-renewal. Oncol. Rep. 21 (2009) 419–424. Web of ScienceGoogle Scholar

About the article

Published Online: 2014-03-26

Published in Print: 2014-03-01

Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-013-0112-1.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Meysam Yousefi, Tayyeb Bahrami, Arash Salmaninejad, Rahim Nosrati, Parisa Ghaffari, and Seyed H. Ghaffari
Cellular Oncology, 2017
Raheleh Roudi, Marzieh Ebrahimi, Ahmad Shariftabrizi, and Zahra Madjd
Future Oncology, 2017, Volume 13, Number 20, Page 1809
Norashikin Zakaria, Nazilah Abdul Satar, Noor Hanis Abu Halim, Siti Hawa Ngalim, Narazah Mohd Yusoff, Juntang Lin, and Badrul Hisham Yahaya
Frontiers in Oncology, 2017, Volume 7
S.S. Pedrosa, P. Pereira, A. Correia, and F.M. Gama
European Journal of Pharmaceutical Sciences, 2017, Volume 104, Page 102
Raheleh Roudi, Shahla Roudbar Mohammadi, Maryam Roudbary, and Monireh Mohsenzadegan
Investigational New Drugs, 2017, Volume 35, Number 4, Page 509
Raheleh Roudi, Zahra Madjd, Marzieh Ebrahimi, Ali Najafi, Alireza Korourian, Ahmad Shariftabrizi, and Ali Samadikuchaksaraei
Tumor Biology, 2016, Volume 37, Number 9, Page 11843
Oncology Reports, 2015, Volume 34, Number 4, Page 2126
Mingchuan Zhao, Yishi Zhang, Huijun Zhang, Shaohua Wang, Mengmeng Zhang, Xi Chen, Heyong Wang, Gang Zeng, Xiaofeng Chen, Gentao Liu, and Caicun Zhou
Lung Cancer, 2015, Volume 87, Number 2, Page 98

Comments (0)

Please log in or register to comment.
Log in