Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 19, Issue 1

MiR-34a regulates apoptosis in liver cells by targeting the KLF4 gene

Qiu Chen / Lei Li / Yu Tu / Lu Zheng / Wei Liu / Xue Zuo / Yong He / Shu Zhang / Wei Zhu / Jian Cao / Feng Cui / Jun Hou
Published Online: 2014-03-26 | DOI: https://doi.org/10.2478/s11658-013-0115-y


MicroRNAs (miRNAs) regulate gene expression by inhibiting translation or targeting messenger RNA (mRNA) for degradation in a posttranscriptional fashion. In this study, we show that ectopic expression of miR-34a-5p reduces the mRNA and protein levels of Krüppel-like factor 4 (KLF4). We also demonstrate that miR-34a targets the 3′-untranslated mRNA region of KLF4 and show that overexpression of miR-34a induces a significant level of apoptosis in BNL CL.2 cells exposed to doxorubicin or 10 Gy X-ray. Our data suggest that the effects of miR-34a on apoptosis occur due to the downregulation of KLF4.

Keywords: MiR-34a; KLF4; Apoptosis; Liver; Irradiation; Doxorubicin

  • [1] Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 (2004) 281–297. http://dx.doi.org/10.1016/S0092-8674(04)00045-5CrossrefGoogle Scholar

  • [2] Kim, V.N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell. Biol. 6 (2005) 376–385. http://dx.doi.org/10.1038/nrm1644CrossrefGoogle Scholar

  • [3] Nilsen, T.W. Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet. 23 (2007) 243–249. http://dx.doi.org/10.1016/j.tig.2007.02.011Web of ScienceCrossrefGoogle Scholar

  • [4] Sunkar, R., Chinnusamy, V., Zhu, J. and Zhu, J.K. Small RNAs as big players in plant abotic stress responses and nutrient deprivation. Trends Plant Sci. 12 (2007) 301–309. http://dx.doi.org/10.1016/j.tplants.2007.05.001CrossrefWeb of ScienceGoogle Scholar

  • [5] Kulshreshtha, R., Ferracin, M., Wojcik, S.E., Garzon, R., Alder, H., Agosto-Perez, F.J., Davuluri, R., Liu, C.G., Croce, C.M., Negrini, M., Calin, G.A. and Ivan, M.A. microRNA signature of hypoxia. Mol. Cell. Biol. 27 (2007) 1859–1867. http://dx.doi.org/10.1128/MCB.01395-06Web of ScienceCrossrefGoogle Scholar

  • [6] Trindade, I., Capitão, C., Dalmay, T., Fevereiro, M.P. and Santos, D.M. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231 (2010) 705–716. http://dx.doi.org/10.1007/s00425-009-1078-0Web of ScienceCrossrefGoogle Scholar

  • [7] Simone, N.L., Soule, B.P., Ly, D., Saleh, A.D., Savage, J.E., Degraff, W., Cook, J., Harris, C.C., Gius, D. and Mitchell, J.B. Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One 4 (2009) e6377. http://dx.doi.org/10.1371/journal.pone.0006377CrossrefGoogle Scholar

  • [8] Chaudhry, M.A. Real-time PCR analysis of micro-RNA expression in ionizing radiation-treated cells. Cancer Biother. Radiopharm. 24 (2009) 49–56. http://dx.doi.org/10.1089/cbr.2008.0513CrossrefWeb of ScienceGoogle Scholar

  • [9] Chaudhry, M.A. Biomarkers for human radiation exposure. J. Biomed. Sci. 15 (2008) 557–563. http://dx.doi.org/10.1007/s11373-008-9253-zCrossrefGoogle Scholar

  • [10] Leung, A.K.L. and Sharp, P.A. MicroRNA functions in stress responses. Mol. Cell 40 (2010) 205–215. http://dx.doi.org/10.1016/j.molcel.2010.09.027Web of ScienceCrossrefGoogle Scholar

  • [11] Babar, I.A., Slack, F.J. and Weidhaas, J.B. MiRNA modulation of the cellular stress response. Future Oncol. 4 (2008) 289–298. http://dx.doi.org/10.2217/14796694.4.2.289Web of ScienceCrossrefGoogle Scholar

  • [12] Ichimura, A., Ruike, Y., Terasawa, K., Shimizu, K. and Tsujimoto, G. MicroRNA-34a inhibits cell proliferation by repressing mitogen-activated protein kinase 1 during megakaryocytic differentiation of K562 cells. Mol. Pharmacol. 77 (2010) 1016–1024. http://dx.doi.org/10.1124/mol.109.063321CrossrefWeb of ScienceGoogle Scholar

  • [13] Sun, F., Fu, H., Liu, Q., Tie, Y., Zhu, J., Xing, R., Sun, Z. and Zheng, X. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett. 582 (2008) 1564–1568. http://dx.doi.org/10.1016/j.febslet.2008.03.057CrossrefWeb of ScienceGoogle Scholar

  • [14] Jain, A.K., Allton, K., Iacovino, M., Mahen, E., Milczarek, R.J., Zwaka, T.P., Kyba, M. and Barton, M.C. p53 Regulates Cell Cycle and MicroRNAs to Promote Differentiation of Human Embryonic Stem Cells. PLoS Biol. 10 (2012) e1001268. http://dx.doi.org/10.1371/journal.pbio.1001268Web of ScienceCrossrefGoogle Scholar

  • [15] Ji, X., Wang, Z., Geamanu, A., Goja, A., Sarkar, F.H. and Gupta, S.V. Delta-tocotrienol suppresses Notch-1 pathway by up-regulating miR-34a in non-small cell lung cancer cells. Int. J. Cancer 131 (2012) 2668–2677. http://dx.doi.org/10.1002/ijc.27549CrossrefGoogle Scholar

  • [16] Chang, T.C., Wentzel, E.A., Kent, O.A., Ramachandran, K., Mullendore, M., Lee, K.H., Feldmann, G., Yamakuchi, M., Ferlito, M., Lowenstein, C.J., Arking, D.E., Beer, M.A., Maitra, A. and Mendell, J.T. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26 (2007) 745–752. http://dx.doi.org/10.1016/j.molcel.2007.05.010CrossrefGoogle Scholar

  • [17] Hermeking, H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 17 (2010) 193–199. http://dx.doi.org/10.1038/cdd.2009.56Web of ScienceCrossrefGoogle Scholar

  • [18] Krek, A., Grün, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M. and Rajewsky, N. Combinatorial microRNA target predictions. Nat. Genet. 37 (2005) 495–500. http://dx.doi.org/10.1038/ng1536CrossrefGoogle Scholar

  • [19] Ghaleb, A.M., Katz, J.P., Kaestner, K.H., Du, J.X. and Yang, V.W. Krüppellike factor 4 exhibits antiapoptotic activity following gamma-radiationinduced DNA damage. Oncogene 26 (2007) 2365–2373. http://dx.doi.org/10.1038/sj.onc.1210022CrossrefWeb of ScienceGoogle Scholar

  • [20] http://www.genepharma.com/En/productslist.asp?Parentid=15&sortname=miRNA Google Scholar

  • [21] http://www.microrna.org/microrna/home.do Google Scholar

  • [22] http://www.mirbase.org Google Scholar

  • [23] http://pictar.mdc-berlin.de Google Scholar

  • [24] Xia, J., Duan, Q., Ahmad, A., Bao, B., Benerjee, S., Shi, Y., Ma, J., Geng, J., Chen, Z., Rahman, K.M., Miele, L., Sarkar, F.H. and Wang, Z. Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. Curr. Drug Targets 13 (2012) 1750–1756. http://dx.doi.org/10.2174/138945012804545597Web of ScienceCrossrefGoogle Scholar

  • [25] Sacher, G.A. Dependence of acute radiosensitivity on age in adult female mouse. Science 125 (1957) 1039–1040. http://dx.doi.org/10.1126/science.125.3256.1039CrossrefGoogle Scholar

  • [26] Crosfill, M.L., Lindop, P.J. and Rotblat, J. Variation of sensitivity to ionizing radiation with age. Nature 183 (1959) 1729–1730. http://dx.doi.org/10.1038/1831729a0CrossrefGoogle Scholar

  • [27] Burdelya, L.G., Krivokrysenko, V.I., Tallant, T.C., Strom, E., Gleiberman, A.S., Gupta, D., Kurnasov, O.V., Fort, F.L., Osterman, A.L., Didonato, J.A., Feinstein, E. and Gudkov, A.V.. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320 (2008) 226–230. http://dx.doi.org/10.1126/science.1154986CrossrefGoogle Scholar

  • [28] Lewanski, C.R. and Gullick, W.J. Radiotherapy and cellular signaling. Lancet Oncol. 2 (2001) 366–370. http://dx.doi.org/10.1016/S1470-2045(00)00391-0CrossrefGoogle Scholar

  • [29] Peter, M.E. Targeting of mRNAs by multiple miRNAs: the next step. Oncogene 29 (2010) 2161–2164. http://dx.doi.org/10.1038/onc.2010.59CrossrefWeb of ScienceGoogle Scholar

  • [30] Kloosterman, W.P. and Plasterk, R.H. The diverse functions of microRNAs in animal development and disease. Dev. Cell 11 (2006) 441–450. http://dx.doi.org/10.1016/j.devcel.2006.09.009CrossrefGoogle Scholar

  • [31] Esquela-Kerscher, A. and Slack, F.J. Oncomirs-microRNAs with a role in cancer. Nat. Rev. Cancer 6 (2006) 259–269. http://dx.doi.org/10.1038/nrc1840CrossrefGoogle Scholar

  • [32] Thalia, A.F, Jessica, I.H., Pavel, M. and Thomas, T. microRNAs in Human Cancer. Adv. Exp. Med. Biol. 774 (2013) 1–20. Google Scholar

  • [33] Metheetrairut, C. and Slack, F.J. MicroRNAs in the ionizing radiation response and in radiotherapy. Curr. Opin. Genet. Dev. 23 (2013) 12–19. http://dx.doi.org/10.1016/j.gde.2013.01.002Web of ScienceCrossrefGoogle Scholar

  • [34] Chang, T.C., Wentzel, E.A., Kent, O.A., Ramachandran, K., Mullendore, M., Lee, K.H, Feldmann, G., Yamakuchi, M., Ferlito, M., Lowenstein, C.J., Arking, D.E., Beer, M.A., Maitra, A. and Mendell, J.T. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26 (2007) 745–752. http://dx.doi.org/10.1016/j.molcel.2007.05.010CrossrefGoogle Scholar

  • [35] Raver-Shapira, N., Marciano, E., Meiri, E., Spector, Y., Rosenfeld, N., Moskovits, N., Bentwich, Z. and Oren, M. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell 26 (2007) 731–743. http://dx.doi.org/10.1016/j.molcel.2007.05.017CrossrefGoogle Scholar

  • [36] Zhang, W., Shields, J.M., Sogawa, K., Fujii-Kuriyama, Y. and Yang, V.W. The gut-enriched Kruppel-like factor suppresses the activity of the CYP1A1 promoter in a Spl-dependent fashion. J. Biol. Chem. 273 (1998) 17917–17925. http://dx.doi.org/10.1074/jbc.273.28.17917CrossrefGoogle Scholar

  • [37] Yoon, H.S., Chen, X. and Yang, V.W. Kruppel-like factor 4 mediates p53- dependent G1/S cell cycle arrest in response to DNA damage. J. Biol. Chem. 278 (2003) 2101–2105. http://dx.doi.org/10.1074/jbc.M211027200CrossrefGoogle Scholar

  • [38] Yoon, H.S. and Yang, V.W. Requirement of Kruppel-like factor 4 in preventing entry into mitosis following DNA damage. J. Biol. Chem. 279 (2004) 5035–5041. http://dx.doi.org/10.1074/jbc.M307631200CrossrefGoogle Scholar

  • [39] Calin, G.A. and Croce, C.M. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 66 (2006) 7390–7394. http://dx.doi.org/10.1158/0008-5472.CAN-06-0800CrossrefGoogle Scholar

  • [40] Hammond, S.M. MicroRNAs as oncogenes. Curr. Opin. Genet. Dev. 16 (2006) 4–9. http://dx.doi.org/10.1016/j.gde.2005.12.005CrossrefGoogle Scholar

  • [41] Bommer, G.T., Gerin, I., Feng, Y., Kaczorowski, A.J., Kuick, R., Love, R.E., Zhai, Y., Giordano, T.J., Qin, Z.S., Moore, B.B., MacDougald, O.A., Cho, K.R. and Fearon, E.R. P53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 17 (2007) 1298–1307. http://dx.doi.org/10.1016/j.cub.2007.06.068CrossrefWeb of ScienceGoogle Scholar

  • [42] Fan, F., Sun, A., Zhao, H., Liu, X., Zhang, W., Jin, X., Wang, C., Ma, X., Shen, C., Zou, Y., Hu, K. and Ge, J. MicroRNA-34a promotes cardiomyocyte apoptosis post myocardial infarction through down-regulating aldehyde dehydrogenase 2. Curr. Pharm. Des. 19 (2013) 4865–4873. http://dx.doi.org/10.2174/13816128113199990325CrossrefGoogle Scholar

  • [43] Sasaki, A., Udaka, Y., Tsunoda, Y., Yamamoto, G., Tsuji, M., Oyamada, H., Oguchi, K. and Mizutani, T. Analysis of p53 and miRNA expression after irradiation of glioblastoma cell lines. Anticancer Res. 32 (2012) 4709–4713. Google Scholar

About the article

Published Online: 2014-03-26

Published in Print: 2014-03-01

Citation Information: Cellular and Molecular Biology Letters, Volume 19, Issue 1, Pages 52–64, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-013-0115-y.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Murali Ganesan, Sathish Kumar Natarajan, Jinjin Zhang, Justin L. Mott, Larisa I. Poluektova, Benita L. McVicker, Kusum K. Kharbanda, Dean J. Tuma, and Natalia A. Osna
American Journal of Physiology-Gastrointestinal and Liver Physiology, 2016, Volume 310, Number 11, Page G930
Sathish Kumar Natarajan, Bailey A. Stringham, Ashley M. Mohr, Cody J. Wehrkamp, Sizhao Lu, Mary Anne Phillippi, Dee Harrison-Findik, and Justin L. Mott
Journal of Lipid Research, 2017, Volume 58, Number 5, Page 866
Jike Lu, Chen Chen, Limin Hao, Zhiqiang Zheng, Naixun Zhang, and Zhenyu Wang
Cell Biology International, 2016, Volume 40, Number 8, Page 873
Guang-Chao Wang, Qian-Yun He, Da-Ke Tong, Chuan-Feng Wang, Kang Liu, Chen Ding, Fang Ji, and Hao Zhang
Journal of Bone Oncology, 2016, Volume 5, Number 2, Page 51
J Gao, N Li, Y Dong, S Li, L Xu, X Li, Y Li, Z Li, S S Ng, J J Sung, L Shen, and J Yu
Oncogene, 2015, Volume 34, Number 31, Page 4142
Xiao Zhang, Yin-Lin Ge, Shu-Ping Zhang, Ping Yan, and Run-Hua Tian
Cellular and Molecular Biology Letters, 2014, Volume 19, Number 4

Comments (0)

Please log in or register to comment.
Log in