Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 19, Issue 1


Allelic isoforms of the chicken and duck histone H1.a

Ewa Górnicka-Michalska / Andrzej Kowalski / Jan Pałyga
Published Online: 2014-03-26 | DOI: https://doi.org/10.2478/s11658-014-0182-8


Two isoforms of the erythrocyte histone H1.a were identified in two conservative flocks of Rhode Island Red chickens and six conservative flocks of ducks. The H1.a1 and H1.a2 isoforms formed three phenotypes (a1, a2 and a1a2) and were electrophoretically similar in the two species. The frequency of phenotype and histone H1.a allele occurrence varied within the genetic groups of birds, but the relatively rare allele a 2 was only detected in chicken and duck strains with colored feathers. Using mass spectrometry, we established that the difference between the measured masses of the duck H1.a isoforms was 156 Da. Since this value corresponds to the mass of the arginine residue alone or to the combined mass of the valine and glycine residues, we believe that the polymorphism of duck histone H1.a might have originated from sequence variation. A mass difference of 1 Da observed between chicken H1.a isoforms corresponded well to the previously detected Glu/Lys substitution (0.9414 Da) at position 117.

Keywords: Chicken; Duck; Electrophoresis; Histone H1.a; Polymorphism; Mass spectrometry

  • [1] Happel, N. and Doenecke, D. Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 431 (2009) 1–12. http://dx.doi.org/10.1016/j.gene.2008.11.003CrossrefWeb of ScienceGoogle Scholar

  • [2] Fan, Y., Nikitina, T., Zhao, J., Fleury, T.J., Bhattacharyya, R., Bouhassira, E.E, Stein, A., Woodcock, C.L. and Skoultchi, A.I. Histone H1 depletion in mammals alter global chromatin structure but causes specific changes in gene regulation. Cell 123 (2005) 1199–1212. http://dx.doi.org/10.1016/j.cell.2005.10.028CrossrefGoogle Scholar

  • [3] Terme, J-M., Sese, B., Millan-Arino, L., Mayor, R., Izpisua Belmonte, J.C., Barrero, M.J. and Jordan, A. Histone H1 variants are differently expressed and incorporated into chromatin during differentiation and reprogramming to pluripotency. J. Biol. Chem. 286 (2011) 35347–35357. http://dx.doi.org/10.1074/jbc.M111.281923CrossrefWeb of ScienceGoogle Scholar

  • [4] Parseghian, M.H. and Hamkalo, B.A. A compendium of the histone H1 family of somatic subtypes: An elusive cast of characters and their characteristics. Biochem. Cell. Biol. 79 (2001) 289–304. http://dx.doi.org/10.1139/o01-099CrossrefGoogle Scholar

  • [5] Izzo, A., Kamieniarz, K. and Schneider, R. The histone H1 family: specific members, specific functions? Biol. Chem. 389 (2008) 333–343. http://dx.doi.org/10.1515/BC.2008.037CrossrefGoogle Scholar

  • [6] McBryant, S.J., Lu, X. and Hansen, J.C. Multifunctionality of the linker histones: an emerging role for protein-protein interactions. Cell. Res. 20 (2010) 519–528. http://dx.doi.org/10.1038/cr.2010.35Web of ScienceCrossrefGoogle Scholar

  • [7] Jerzmanowski, A. The linker histones, In: Zlatanova, J., Leuba, S., (Eds.), Chromatin structure & dynamics: State-of-the-Art. Elsevier Science BV, 2004, 75–102. http://dx.doi.org/10.1016/S0167-7306(03)39004-0CrossrefGoogle Scholar

  • [8] Kowalski, A., Pałyga, J., Górnicka-Michalska, E. and Krajewska, W.M. Allelic polymorphism of histone H1.a in duck erythrocytes. Biochem. Genet. 36 (1998) 183–191. http://dx.doi.org/10.1023/A:1018768623444CrossrefGoogle Scholar

  • [9] Górnicka-Michalska, E, Pałyga, J, Kowalski, A. and Cywa-Benko K. Sequence variants of chicken linker histone H1.a. FEBS J. 273 (2006) 1240–1250. http://dx.doi.org/10.1111/j.1742-4658.2006.05147.xCrossrefGoogle Scholar

  • [10] Coles, L.S., Robins, A.J., Madley, L.K. and Wells, R.S. Characterization of the chicken histone H1 gene complement. Generation of a complete set of vertebrate H1 protein sequences. J. Biol. Chem. 262 (1987) 9656–9663. Google Scholar

  • [11] Pałyga, J., Górnicka-Michalska, E. and Kowalski, A. Genetic polymorphism of histone H1.z in duck erythrocytes. Biochem J. 294 (1993) 859–863. Google Scholar

  • [12] Kowalski, A. and Pałyga, J. High-resolution two-dimensional polyacrylamide gel electrophoresis: a tool for identification of polymorphic and modified linker histone components, In: Magdeldin S., (Ed.), Gel electrophoresis — Principles and Basics, In Tech, 2012, 117–136. Google Scholar

  • [13] Mizzen, C.A., Alpert, A.J., Levesque, L., Kruck, T.P.A. and McLachlan, D.R. Resolution of allelic and non-allelic variants of histone H1 by cationexchange-hydrophilic-interaction chromatography. J. Chromatogr. B 744 (2000) 33–46. http://dx.doi.org/10.1016/S0378-4347(00)00210-3CrossrefGoogle Scholar

  • [14] Sarg, B., Green, A., Soderkvist, B., Helliger, W., Runquist, I. and Lindner, H. Characterization of sequence variations in human histone H1.2 and H1.4 subtypes. FEBS J. 272 (2005) 3673–3683. http://dx.doi.org/10.1111/j.1742-4658.2005.04793.xCrossrefGoogle Scholar

  • [15] Ortiz, M.L., Calero, M., Fernandez Patron, C., Patron, C.F., Castellanos, L. and Mendez, L. Imidazole-SDS-Zn reverse staining of proteins in gels containing or not SDS and microsequence of individual unmodified electroblotted proteins. FEBS Lett. 296 (1992) 300–304. http://dx.doi.org/10.1016/0014-5793(92)80309-5CrossrefGoogle Scholar

  • [16] Cohen, S.L. and Chait, B.T. Mass spectrometry of whole proteins eluted from sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. Anal. Biochem. 247 (1997) 257–267. http://dx.doi.org/10.1006/abio.1997.2072CrossrefGoogle Scholar

  • [17] Villar-Garea, A. and Imhof, A. Fine mapping of posttranslational modifications of the linker histone H1 from Drosophila melanogaster. PLoS One (2008) e1553. doi:10.1371/journal.pone.00015531-11. CrossrefGoogle Scholar

  • [18] Berdnikov, V.A., Bogdanova, V.S., Gorel, F.L., Kosterin, O.E. and Trusov, Y.A. Large changes in the structure of the major histone H1 subtype result in small effects on quantitative traits in legumes. Genetica 119 (2003) 67–182. http://dx.doi.org/10.1023/A:1026058605485CrossrefGoogle Scholar

  • [19] Wisniewski, J.R., Zougman, A., Kruger, S. and Mann, M. Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue. Mol. Cell. Proteomics 6 (2007) 72–87. http://dx.doi.org/10.1074/mcp.M600255-MCP200Web of ScienceCrossrefGoogle Scholar

  • [20] Routh, A., Sandin, S. and Rhodes, D. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc. Natl. Acad. Sci. USA 105 (2008) 8872–8877. http://dx.doi.org/10.1073/pnas.0802336105CrossrefGoogle Scholar

  • [21] Zlatanova, J., Caiafa, P. and van Holde, K. Linker histone binding and displacement: versatile mechanism for transcriptional regulation. FASEB J. 14 (2000) 1697–1704. http://dx.doi.org/10.1096/fj.99-0869revCrossrefGoogle Scholar

  • [22] Trollope, A., Sapojnikova, N., Thorne, A.W., Crane-Robinson, C. and Myers, F.A. Linker histone subtypes are not generalized gene repressors. Biochem. Biophys. Acta 1799 (2010) 642–652. Web of ScienceGoogle Scholar

  • [23] Caterino, T.L., Fang, H. and Hayes, J.J. Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain. Mol. Cell. Biol. 31 (2011) 2341–2348. http://dx.doi.org/10.1128/MCB.05145-11CrossrefWeb of ScienceGoogle Scholar

  • [24] Hansen, J.C., Lu, X., Ross, E.D. and Woody, R.W. Intrinsic protein disorder, amino acid composition, and histone terminal domains. J. Biol. Chem. 281 (2006) 1853–18656. http://dx.doi.org/10.1074/jbc.R500022200CrossrefGoogle Scholar

  • [25] Lu, X., Hamkalo, B., Parseghian, M.H. and Hansen, J.C. Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder. Biochemistry 48 (2009) 164–172. http://dx.doi.org/10.1021/bi801636yCrossrefWeb of ScienceGoogle Scholar

  • [26] Bogdanova, V.S., Lester, D.R., Berdnikov, V.A. and Andersson, I. Structure of allelic variants of subtype 5 of histone H1 in a pea Pisum sativum L. Heredity 94 (2005) 582–588. http://dx.doi.org/10.1038/sj.hdy.6800650CrossrefGoogle Scholar

  • [27] Bogdanova, V.S., Kosterin, O.E. and Berdnikov, V.A. Phenotypic effect of substitution of allelic variants for a histone H1 subtype specific for growing tissues in the garden pea (Pisum sativum L.). Genetica 130 (2007) 61–72. http://dx.doi.org/10.1007/s10709-006-0021-6Web of ScienceCrossrefGoogle Scholar

  • [28] Pałyga, J., Górnicka-Michalska, E., Kowalski, A., Książkiewicz, J. Natural allelic variation of duck erythrocyte histone H1.b. Int. J. Biochem. Cell Biol. 32 (2000) 665–675. http://dx.doi.org/10.1016/S1357-2725(99)00153-3CrossrefGoogle Scholar

About the article

Published Online: 2014-03-26

Published in Print: 2014-03-01

Citation Information: Cellular and Molecular Biology Letters, Volume 19, Issue 1, Pages 116–125, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-014-0182-8.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Andrzej Kowalski and Sebastian Knaga
Archives Animal Breeding, 2017, Volume 60, Number 2, Page 145
Andrzej Kowalski and Janusz Markowski
Archives of Environmental Contamination and Toxicology, 2018
Andrzej Kowalski and Jan Pałyga
Biology of the Cell, 2016, Volume 108, Number 12, Page 339
Andrzej Kowalski
Comptes Rendus Biologies, 2016, Volume 339, Number 9-10, Page 357

Comments (0)

Please log in or register to comment.
Log in