Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 22, 2014

Transport of 3-bromopyruvate across the human erythrocyte membrane

  • Izabela Sadowska-Bartosz EMAIL logo , Mirosław Soszyński , Stanisław Ułaszewski , Young Ko and Grzegorz Bartosz

Abstract

3-Bromopyruvic acid (3-BP) is a promising anticancer compound because it is a strong inhibitor of glycolytic enzymes, especially glyceraldehyde 3-phosphate dehydrogenase. The Warburg effect means that malignant cells are much more dependent on glycolysis than normal cells. Potential complications of anticancer therapy with 3-BP are side effects due to its interaction with normal cells, especially erythrocytes. Transport into cells is critical for 3-BP to have intracellular effects. The aim of our study was the kinetic characterization of 3-BP transport into human erythrocytes. 3-BP uptake by erythrocytes was linear within the first 3 min and pH-dependent. The transport rate decreased with increasing pH in the range of 6.0–8.0. The Km and Vm values for 3-BP transport were 0.89 mM and 0.94 mmol/(l cells x min), respectively. The transport was inhibited competitively by pyruvate and significantly inhibited by DIDS, SITS, and 1-cyano-4-hydroxycinnamic acid. Flavonoids also inhibited 3-BP transport: the most potent inhibition was found for luteolin and quercetin.

[1] Schaefer, N.G., Geschwind, J.F., Engle, J., Buchanan, J.W. and Wahl, R.L. Systemic administration of 3-bromopyruvate in treating disseminated aggressive lymphoma. Transl. Res. 159 (2012) 51–57. http://dx.doi.org/10.1016/j.trsl.2011.08.00810.1016/j.trsl.2011.08.008Search in Google Scholar

[2] Ko, Y.H., Pedersen, P.L. and Geschwind, J.F. Glucose metabolism in the rabbit VX tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett. 173 (2001) 83–91. http://dx.doi.org/10.1016/S0304-3835(01)00667-X10.1016/S0304-3835(01)00667-XSearch in Google Scholar

[3] Sánchez-Aragó, M. and Cuezva, J.M. The bioenergetic signature of isogenic colon cancer cells predicts the cell death response to treatment with 3-bromopyruvate, iodoacetate or 5-fluorouracil. J. Transl. Med. 9 (2011) 19. http://dx.doi.org/10.1186/1479-5876-9-1910.1186/1479-5876-9-19Search in Google Scholar PubMed PubMed Central

[4] Tang, Z., Yuan, S., Hu, Y., Zhang, H., Wu, W., Zeng, Z., Yang, J., Yun, J., Xu, R. and Huang, P. Over-expression of GAPDH in human colorectal carcinoma as a preferred target of 3-bromopyruvate propyl ester. J. Bioenerg. Biomembr. 44 (2012) 117–125. http://dx.doi.org/10.1007/s10863-012-9420-910.1007/s10863-012-9420-9Search in Google Scholar PubMed PubMed Central

[5] Queirós, O., Preto, A., Pacheco, A., Pinheiro, C., Azevedo-Silva, J., Moreira, R., Pedro, M., Ko, Y.H., Pedersen, P.L., Baltazar, F. and Casal, M. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate. J. Bioenerg. Biomembr. 44 (2012) 141–153. http://dx.doi.org/10.1007/s10863-012-9418-310.1007/s10863-012-9418-3Search in Google Scholar PubMed

[6] Ko, Y.H., Smith, B.L., Wang, Y., Pomper, M.G., Rini, D.A, Torbenson, M.S., Hullihen, J. and Pedersen, P.L. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem. Biophys. Res. Commun. 324 (2004) 269–275. http://dx.doi.org/10.1016/j.bbrc.2004.09.04710.1016/j.bbrc.2004.09.047Search in Google Scholar PubMed

[7] Ganapathy-Kanniappan, S., Kunjithapatham, R. and Geschwind, J.F. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting. Anticancer Res. 33 (2013) 13–20. Search in Google Scholar

[8] Lea, M.A., Qureshi, M.S., Buxhoeveden, M., Gengel, N., Kleinschmit, J. and Desbordes, C. Regulation of the proliferation of colon cancer cells by compounds that affect glycolysis, including 3-bromopyruvate, 2-deoxyglucose and biguanides. Anticancer Res. 33 (2013) 401–407. Search in Google Scholar

[9] Lis, P., Zarzycki, M., Ko, Y.H., Casal, M., Pedersen, P.L., Goffeau, A. and Ulaszewski, S. Transport and cytotoxicity of the anticancer drug 3-bromopyruvate in the yeast Saccharomyces cerevisiae. J. Bioenerg. Biomembr. 44 (2012) 155–161. http://dx.doi.org/10.1007/s10863-012-9421-810.1007/s10863-012-9421-8Search in Google Scholar PubMed

[10] Dean, M., Hamon, Y. and Chimini, G. The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res. 42 (2001) 1007–1017. Search in Google Scholar

[11] Geschwind, J.F., Ko, Y.H., Torbenson, M.S., Magee, C. and Pedersen, P.L. Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res. 62 (2002) 3909–3913. Search in Google Scholar

[12] Chang, J.M., Chung, J.W., Jae, H.J., Eh, H., Son, K.R., Lee, K.C. and Park, J.H. Local toxicity of hepatic arterial infusion of hexokinase II inhibitor, 3-bromopyruvate: In vivo investigation in normal rabbit model. Acad. Radiol. 14 (2007) 85–92. http://dx.doi.org/10.1016/j.acra.2006.09.05910.1016/j.acra.2006.09.059Search in Google Scholar PubMed

[13] Dell’Antone, P. Targets of 3-bromopyruvate, a new, energy depleting, anticancer agent. Med. Chem. 5 (2009) 491–496. http://dx.doi.org/10.2174/15734060979017055110.2174/157340609790170551Search in Google Scholar PubMed

[14] Sadowska-Bartosz, I. and Bartosz, G. The effect of 3-bromopyruvic acid on human erythrocyte antioxidant defense system. Cell Biol. Int. 2013, in press; DOI: 10.1002/cbin.10160. 10.1002/cbin.10160Search in Google Scholar PubMed

[15] Dyląg, M., Lis, P., Niedźwiecka, K., Ko, Y.H., Pedersen, P.L., Goffeau, A. and UŁaszewski, S. 3-bromopyruvate: a novel antifungal agent against the human pathogen Cryptococcus neoformans. Biochem. Biophys. Res. Commun. 434 (2013) 322–327. http://dx.doi.org/10.1016/j.bbrc.2013.02.12510.1016/j.bbrc.2013.02.125Search in Google Scholar PubMed

[16] Janas, T. and Janas, T. Involvement of carboxyl groups in chloride transport and reversible DIDS binding to band 3 protein in human erythrocytes. Cell. Mol. Biol. Lett. 16 (2011) 342–358. http://dx.doi.org/10.2478/s11658-011-0010-310.2478/s11658-011-0010-3Search in Google Scholar PubMed PubMed Central

[17] Kennedy, K.M. and Dewhirst, M.W. Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 6 (2010) 127–148. http://dx.doi.org/10.2217/fon.09.14510.2217/fon.09.145Search in Google Scholar PubMed PubMed Central

[18] Birsoy, K., Wang, T., Possemato, R., Yilmaz, O.H., Koch, C.E., Chen, W.W., Hutchins, A.W., Gultekin, Y., Peterson, T.R., Carette, J.E., Brummelkamp, T.R., Clish, C.B. and Sabatini, D.M. MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat. Genet. 45 (2013) 104–108. http://dx.doi.org/10.1038/ng.247110.1038/ng.2471Search in Google Scholar PubMed PubMed Central

[19] Halestrap, A.P. and Meredith, D. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. 447 (2004) 619–628. http://dx.doi.org/10.1007/s00424-003-1067-210.1007/s00424-003-1067-2Search in Google Scholar PubMed

[20] Dhup, S., Dadhich, R.K., Porporato, P.E. and Sonveaux, P. Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr. Pharm. Des. 18 (2012) 1319–1330. http://dx.doi.org/10.2174/13816121279950490210.2174/138161212799504902Search in Google Scholar PubMed

[21] Ullah, M.S., Davies, A.J. and Halestrap, A.P. The plasma membrane lactate transporter MsCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J. Biol. Chem. 281 (2006) 9030–9037. http://dx.doi.org/10.1074/jbc.M51139720010.1074/jbc.M511397200Search in Google Scholar PubMed

[22] Draoui, N, and Feron, O. Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis. Model. Mech. 4 (2011) 727–732. http://dx.doi.org/10.1242/dmm.00772410.1242/dmm.007724Search in Google Scholar PubMed PubMed Central

[23] Halestrap, A.P. The monocarboxylate transporter family — structure and functional characterization. IUBMB Life 64 (2012) 1–9. http://dx.doi.org/10.1002/iub.57310.1002/iub.573Search in Google Scholar PubMed

[24] Kunjithapatham, R., Geschwind, J.F., Rao, P.P., Boronina, T.N., Cole, R.N. and Ganapathy-Kanniappan, S. Systemic administration of 3-bromopyruvate reveals its interaction with serum proteins in a rat model. BMC Res. Notes 17 (2013) 277. http://dx.doi.org/10.1186/1756-0500-6-27710.1186/1756-0500-6-277Search in Google Scholar PubMed PubMed Central

[25] Belt, J.A., Thomas, J.A., Buchsbaum, R.N. and Racker, E. Inhibition of lactate transport and glycolysis in Ehrlich ascites tumor cells by bioflavonoids. Biochemistry 18 (1979) 3506–3511. http://dx.doi.org/10.1021/bi00583a01110.1021/bi00583a011Search in Google Scholar PubMed

[26] Vaidyanathan, J.B. and Walle, T. Cellular uptake and efflux of the tea flavonoid (-) epicatechin-3-gallate in the human intestinal cell line Caco-2. J. Pharmacol. Exp. Ther. 307 (2003) 745–752. http://dx.doi.org/10.1124/jpet.103.05429610.1124/jpet.103.054296Search in Google Scholar PubMed

[27] Di Pietro, A., Conseil, G., Pérez-Victoria, J.M., Dayan, G., Baubichon-Cortay, H., Trompier, D., Steinfels, E., Jault, J.M., de Wet, H., Maitrejean, M., Comte, G., Boumendjel, A., Mariotte, A.M., Dumontet, C., McIntosh, D.B., Goffeau, A., Castanys, S., Gamarro, F. and Barron, D. Modulation by flavonoids of cell multidrug resistance mediated by P-glycoprotein and related ABC transporters. Cell Mol. Life Sci. 59 (2002) 307–322. http://dx.doi.org/10.1007/s00018-002-8424-810.1007/s00018-002-8424-8Search in Google Scholar PubMed

[28] Zhang, S. and Morris, M.E. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J. Pharmacol. Exp. Ther. 304 (2003) 1258–1267. http://dx.doi.org/10.1124/jpet.102.04441210.1124/jpet.102.044412Search in Google Scholar PubMed

[29] Ahmed-Belkacem, A., Pozza, A., Munoz-Martínez, F., Bates, S.E., Castanys, S., Gamarro, F., Di Pietro, A. and Pérez-Victoria, J.M. Flavonoid structure-activity studies identify 6-prenylchrysin and tectochrysin as potent and specific inhibitors of breast cancer resistance protein ABCG2. Cancer Res. 65 (2005) 4852–4860. http://dx.doi.org/10.1158/0008-5472.CAN-04-181710.1158/0008-5472.CAN-04-1817Search in Google Scholar PubMed

[30] Morris, M.E. and Zhang, S. Flavonoid-drug interactions: effects of flavonoids on ABC transporters. Life Sci. 78 (2006) 2116–2130. http://dx.doi.org/10.1016/j.lfs.2005.12.00310.1016/j.lfs.2005.12.003Search in Google Scholar PubMed

[31] Wang, X., Wolkoff, A.W. and Morris, M.E. Flavonoids as a novel class of human organic anion-transporting polypeptide OATP1B1 (OATP-C) modulators. Drug Metab. Dispos. 33 (2005) 1666–1672. http://dx.doi.org/10.1124/dmd.105.00592610.1124/dmd.105.005926Search in Google Scholar PubMed

[32] Fuchikami, H., Satoh, H., Tsujimoto, M., Ohdo, S., Ohtani, H. and Sawada, Y. Effects of herbal extracts on the function of human organic aniontransporting polypeptide OATP-B. Drug Metab. Dispos. 34 (2006) 577–582. http://dx.doi.org/10.1124/dmd.105.00787210.1124/dmd.105.007872Search in Google Scholar PubMed

[33] Wang, Q. and Morris, M.E. Flavonoids modulate monocarboxylate transporter-1-mediated transport of gamma-hydroxybutyrate in vitro and in vivo. Drug Metab. Dispos. 35 (2007) 201–208. http://dx.doi.org/10.1124/dmd.106.01236910.1124/dmd.106.012369Search in Google Scholar PubMed

[34] Poole, R.C. and Halestrap, A.P. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am. J. Physiol. Cell Physiol. 264 (1993) C761–C782. 10.1152/ajpcell.1993.264.4.C761Search in Google Scholar PubMed

[35] Vaihkonen, L.K., Heinonen, O.J., Hyyppa, S., Nieminen, M. and Poso, A.R. Lactate-transport activity in RBCs of trained and untrained individuals from four racing species. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281 (2001) R19–R24. 10.1152/ajpregu.2001.281.1.R19Search in Google Scholar PubMed

[36] Barreca, D., Lagana, G., Tellone, E., Ficarra, S., Leuzzi, U., Galtieri, A. and Bellocco, E. Influences of flavonoids on erythrocyte membrane and metabolic implication through anionic exchange modulation. J. Membr. Biol. 230 (2009) 163–171. http://dx.doi.org/10.1007/s00232-009-9197-x10.1007/s00232-009-9197-xSearch in Google Scholar PubMed

Published Online: 2014-6-22
Published in Print: 2014-6-1

© 2013 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-014-0189-1/html
Scroll to top button