Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter June 22, 2014

WDR5, ASH2L, and RBBP5 control the efficiency of FOS transcript processing

  • Peik Teoh EMAIL logo and Andrew Sharrocks

Abstract

H3K4 trimethylation is strongly associated with active transcription. The deposition of this mark is catalyzed by SET-domain methyltransferases, which consist of a subcomplex containing WDR5, ASH2L, and RBBP5 (the WAR subcomplex); a catalytic SET-domain protein; and additional complexspecific subunits. The ERK MAPK pathway also plays an important role in gene regulation via phosphorylation of transcription factors, co-regulators, or histone modifier complexes. However, the potential interactions between these two pathways remain largely unexplored. We investigated their potential interplay in terms of the regulation of the immediate early gene (IEG) regulatory network. We found that depletion of components of the WAR subcomplex led to increased levels of unspliced transcripts of IEGs that did not necessarily reflect changes in their mature transcripts. This occurs in a manner independent from changes in the H3K4me3 levels at the promoter region. We focused on FOS and found that the depletion of WAR subcomplex components affected the efficiency of FOS transcript processing. Our findings show a new aspect of WAR subcomplex function in coordinating active transcription with efficient pre-mRNA processing.

[1] Lee, J-H. and Skalnik, D.G. CpG binding protein (CXXC finger protein 1) is a component of the mammalian Set 1 histone H3-lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J. Biol. Chem. 280 (2005) 41725–41731. http://dx.doi.org/10.1074/jbc.M50831220010.1074/jbc.M508312200Search in Google Scholar

[2] Dou, Y., Milne, T.A., Tackett, A.J., Smith, E.R., Fukuda, A., Wysocka, J., Allis, C.D., Chait, B.T., Hess, J.L. and Roeder, R.G. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121 (2005) 873–885. http://dx.doi.org/10.1016/j.cell.2005.04.03110.1016/j.cell.2005.04.031Search in Google Scholar

[3] Lee, J.S., Shukla, A., Schneider, J., Swanson, S.K., Washburn, M.P., Florens, L., Bhaumik, S.R. and Shilatifard, A. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 131 (2007) 1084–1096. http://dx.doi.org/10.1016/j.cell.2007.09.04610.1016/j.cell.2007.09.046Search in Google Scholar

[4] Wysocka, J., Swigut, T., Milne, T.A., Dou, Y., Zhang, X., Burlingame, A.L., Roeder, R.G., Brivanlou, A.H. and Allis, C.D. WDR5 associates with histone H3 methylated at K4 and is essential for H3K4 methylation and vertebrate development. Cell 17 (2005) 859–872. http://dx.doi.org/10.1016/j.cell.2005.03.03610.1016/j.cell.2005.03.036Search in Google Scholar

[5] Yokoyama, A., Wang, Z., Wysocka, J., Sanyal, M., Aufiero, D.J., Kitabayashi, I., Herr, W. and Cleary, M.L. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with MENIN to regulate Hox gene expression. Mol. Cell Biol. 24 (2004) 5639–5649. http://dx.doi.org/10.1128/MCB.24.13.5639-5649.200410.1128/MCB.24.13.5639-5649.2004Search in Google Scholar

[6] Issaeva, I., Zonis, Y., Rozavskaia, T., Orlovsky, K., Croce, C.M., Nakamura, T., Mazo, A., Eisenbach, L. and Canaani, E. Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol. Cel. Biol. 27 (2007) 1889–1903. http://dx.doi.org/10.1128/MCB.01506-0610.1128/MCB.01506-06Search in Google Scholar

[7] Patel, A., Vought, V.E., Dharmarajan, V. and Cosgrove, M.S. A novel non-Set domain multi-subunit methyltransferase required for sequential nucleosomal histone H3 methylation by the mixed lineage leukemia protein-1 (MLL1) core complex. J. Biol. Chem. 286 (2011) 3359–3360. http://dx.doi.org/10.1074/jbc.M110.17452410.1074/jbc.M110.174524Search in Google Scholar

[8] Hughes, C.M., Rozenblatt-Rosen, O., Milne, T.A., Copeland, T.D., Levine, S.S., Lee, J.C., Hayes, D.N., Shanmugam, K.S., Bhattacharjee, A., Biondi, C.A., Kay, G.F., Hayward, N.K., Hess, J.L. and Meyerson, M. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell. 13 (2004) 587–597. http://dx.doi.org/10.1016/S1097-2765(04)00081-410.1016/S1097-2765(04)00081-4Search in Google Scholar

[9] Dou, Y., Milne, T.A., Ruthenburg, A.J., Lee, S., Lee, J.W., Verdine, G.L., Allis, C.D. and Roeder, R.G. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struc. Mol. Biol. 13 (2006) 713–719. http://dx.doi.org/10.1038/nsmb112810.1038/nsmb1128Search in Google Scholar PubMed

[10] Avdic, V., Zhang, P., Lanouette, S., Groulx, A., Tremblay, V., Brunzelle, J. and Couture, J-F. Structural and biochemical insights into MLL1 core complex assembly. Structure 19 (2011) 101–108. http://dx.doi.org/10.1016/j.str.2010.09.02210.1016/j.str.2010.09.022Search in Google Scholar PubMed

[11] Cao, F., Chen, Y., Cierpicki, T., Liu, Y., Basrur, V., Lei, M. and Dou, Y. An Ash2L/RbBP5 heterodimer stimulates the MLL1 methyltransferase activity through coordinated substrate interacts with the MLL1 Set domain. PLoS One 5 (2010) e14102. DOI: 10.1371/journal.pone.0014102. http://dx.doi.org/10.1371/journal.pone.001410210.1371/journal.pone.0014102Search in Google Scholar PubMed PubMed Central

[12] Steward, M.M., Lee, J.S., O’Donovan, A., Wyatt, M., Bernstein, B.E. and Shilatifard, A. Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat. Struct. Mol. Biol. 13 (2006) 852–854. http://dx.doi.org/10.1038/nsmb113110.1038/nsmb1131Search in Google Scholar PubMed

[13] Patel, A., Dharmarajan, V., Vought, V.E. and Cosgrove, M.S. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. J. Biol. Chem. 284 (2009) 24242–24256. http://dx.doi.org/10.1074/jbc.M109.01449810.1074/jbc.M109.014498Search in Google Scholar PubMed PubMed Central

[14] Bralten, L.B.C., Kloosterhof, N.K., Gravendeel, L.A.M., Sacchetti, A., Duijm, E.J., Kros, J.M., van den Bent, M.J., Hoogenraad, C.C., Smitt, P.A.E. and French, P.J. Integrated genomic profiling identifies candidate genes implicated in glioma-genesis and a novel LEO1-SLC12A1 fusion gene. Genes, Chromosomes Cancer 49 (2010) 509–517. Search in Google Scholar

[15] Lüscher-Firzlaff, J., Gawlista, I., Vervoorts, J., Kapelle, K., Braunschweig, T., Walsemann, G., Rodgarkia-Schamberger, C., Schuchlautz, H., Dreschers, S., Kremmer, E., Lilischkis, R., Cerni, C., Wellmann, A. and Lüscher, B. The human trithorax protein hASH2 functions as an oncoprotein. Cancer Res. 68 (2008) 749–758. http://dx.doi.org/10.1158/0008-5472.CAN-07-315810.1158/0008-5472.CAN-07-3158Search in Google Scholar PubMed

[16] Wu, M., Wang, P.F., Lee, J.S., Martin-Brown, S., Florens, L., Washburn, M. and Shilatifard, A. Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol. Cell. Biol. 28 (2008) 7337–7344. http://dx.doi.org/10.1128/MCB.00976-0810.1128/MCB.00976-08Search in Google Scholar PubMed PubMed Central

[17] Wang, P., Lin, C., Smith, E.R., Guo, H., Sanderson, B.W., Wu, M., Gogol, M., Alexander, T., Seidel, C., Weidemann, L.M., Ge, K., Krumlauf, R. and Shilatifard, A. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol. Cell. Biol. 29 (2009) 6074–6085. http://dx.doi.org/10.1128/MCB.00924-0910.1128/MCB.00924-09Search in Google Scholar PubMed PubMed Central

[18] Mishra, B.P., Ansari, K.I. and Mandal, S.S. Dynamic association of MLL1, H3K4 trimethylation with chromatin and Hox gene expression during the cell cycle. FEBS J. 276 (2009) 1629–1640. http://dx.doi.org/10.1111/j.1742-4658.2009.06895.x10.1111/j.1742-4658.2009.06895.xSearch in Google Scholar PubMed

[19] Ansari, K.I. and Mandal, S.S. Mixed lineage leukemia: roles in gene expression, hormone signaling and mRNA processing. FEBS J. 277 (2010) 1790–1804. http://dx.doi.org/10.1111/j.1742-4658.2010.07606.x10.1111/j.1742-4658.2010.07606.xSearch in Google Scholar PubMed

[20] Bhatt, D.M., Pandya-Jones, A., Tong, A-J., Barozzi, I., Lissner, M.M., Natoli, G., Black, D.L. and Smale, S.T. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150 (2012) 279–290. http://dx.doi.org/10.1016/j.cell.2012.05.04310.1016/j.cell.2012.05.043Search in Google Scholar PubMed PubMed Central

[21] Sims III, R.J., Millhouse, S., Chen, C-F., Lewis, B.A., Erdjument-Bromage, H., Tempst, P., Manley, J.L. and Reinberg, D. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol. Cell 28 (2007) 665–676. http://dx.doi.org/10.1016/j.molcel.2007.11.01010.1016/j.molcel.2007.11.010Search in Google Scholar PubMed PubMed Central

[22] Roberts, P.J. and Der, C.J. Targeting Raf/MEK/ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 29 (2007) 3291–3310. http://dx.doi.org/10.1038/sj.onc.121042210.1038/sj.onc.1210422Search in Google Scholar PubMed

[23] Galbraith, M.D. and Espinosa, J.M. Lessons on transcriptional control from the serum response network. Curr. Opin. Genet. Dev. 21 (2011) 160–166. http://dx.doi.org/10.1016/j.gde.2011.01.01110.1016/j.gde.2011.01.011Search in Google Scholar PubMed PubMed Central

[24] O’Donnell, A., Odrowaz, Z. and Sharrocks, A.D. Immediate-early gene activation by the MAPK pathways: what do and don’t we know? Biochem. Soc. Trans. 40 (2012) 58–66. http://dx.doi.org/10.1042/BST2011063610.1042/BST20110636Search in Google Scholar PubMed

[25] Hazzalin, C.A. and Mahadevan, L.C. Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun. PLoS Biol. 3 (2005) 2111–2126. http://dx.doi.org/10.1371/journal.pbio.003039310.1371/journal.pbio.0030393Search in Google Scholar PubMed PubMed Central

[26] Fisher, K., Southall, S.M., Wilsonb, J.R. and Poulin, G.B. Methylation and demethylation activities of a C. elegans MLL-like complex attenuate RAS signaling. Dev. Biol. 341 (2010) 142–153. http://dx.doi.org/10.1016/j.ydbio.2010.02.02310.1016/j.ydbio.2010.02.023Search in Google Scholar PubMed

[27] O’Donnell, A., Yang, S.H. and Sharrocks, A.D. MAP kinase-mediated c-fos regulation relies on a histone acetylation relay switch. Mol. Cell 29 (2008) 780–785. http://dx.doi.org/10.1016/j.molcel.2008.01.01910.1016/j.molcel.2008.01.019Search in Google Scholar PubMed PubMed Central

[28] Marais, A., Ji, Z., Child, E.S., Krause, E., Mann, D.J. and Sharrocks, A.D. Cell cycle-dependent regulation of the forkhead transcription factor FOXK2 by CDK?cyclin complexes. J. Biol. Chem. 285 (2010) 35728–35739. http://dx.doi.org/10.1074/jbc.M110.15400510.1074/jbc.M110.154005Search in Google Scholar PubMed PubMed Central

[29] Boros, J., Donaldson, I.J., O’Donnell, A., Odrowaz, Z.A., Zeef, L., Lupien, M., Meyer, C.A., Shirley, L.X., Brown, M. and Sharrocks, A.D. Elucidation of the ELK1 target gene network reveals a role in the coordinate regulation of core components of the gene regulation machinery. Genome Res. 19 (2009) 1963–1973. http://dx.doi.org/10.1101/gr.093047.10910.1101/gr.093047.109Search in Google Scholar PubMed PubMed Central

[30] Scacheri, P.C., Davis, S., Odom, D.T., Crawford, G.E., Perkins, S., Halawi, M.J., Agarwal, S.K., Marx, S.J., Spiegel, A.M., Meltzer, P.S. and Collins, F.S. Genome-wide analysis of menin binding provides insights into MEN1 tumorigenesis. PLoS Genet. 2 (2006) e51. DOI: 10.10.1371/journal.pgen.0020051. http://dx.doi.org/10.1371/journal.pgen.002005110.1371/journal.pgen.0020051Search in Google Scholar PubMed PubMed Central

[31] Blobel, G.A., Kadauke, S., Wang, E., Lau, A.W., Zuber, J., Chou, M.M., and Vakoc, C.R. A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit. Mol. Cell 36 (2009) 970–983. http://dx.doi.org/10.1016/j.molcel.2009.12.00110.1016/j.molcel.2009.12.001Search in Google Scholar PubMed PubMed Central

[32] Edmunds, J.W., Mahadevan, L.C. and Clayton, A.L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27 (2008) 406–420. http://dx.doi.org/10.1038/sj.emboj.760196710.1038/sj.emboj.7601967Search in Google Scholar PubMed PubMed Central

[33] Magerl, C., Ellinger, J., Braunschweig, T., Kremmer, E., Koch, L.K., Höllere, T., Büttner, R., Lüscher, B. and Gütgemann, I. H3K4 dimethylation in hepatocellular carcinoma is rare compared with other hepatobiliary and gastrointestinal carcinomas and correlates with expression of the methylase Ash2 and the demethylase LSD1. Hum. Pathol. 41 (2010) 181–189. http://dx.doi.org/10.1016/j.humpath.2009.08.00710.1016/j.humpath.2009.08.007Search in Google Scholar PubMed

[34] Ang, Y-S., Tsai, S-Y., Lee, D-F., Monk, J., Su, J., Ratnakumar, K., Ding, J., Ge, Y., Darr, H., Chang, B., Wang, J., Rendl, M., Bernstein, E., Schaniel, C. and Lemischka, I.R. WDR5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145 (2011) 183–197. http://dx.doi.org/10.1016/j.cell.2011.03.00310.1016/j.cell.2011.03.003Search in Google Scholar PubMed PubMed Central

[35] Garapaty, S., Xu, C.F., Trojer, P., Mahajan, M.A., Neubert, T.A. and Samuels, H.H. Identification and characterization of a novel nuclear protein complex involved in nuclear hormone receptor-mediated gene regulation. J. Biol. Chem. 284 (2009) 7542–7552. http://dx.doi.org/10.1074/jbc.M80587220010.1074/jbc.M805872200Search in Google Scholar PubMed PubMed Central

Published Online: 2014-6-22
Published in Print: 2014-6-1

© 2013 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-014-0190-8/html
Scroll to top button