Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 19, Issue 2

Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy

Ziwen Wang / Yujung Huang / Jiqiang Zhang
Published Online: 2014-06-22 | DOI: https://doi.org/10.2478/s11658-014-0191-7


Radiotherapy and chemotherapeutic agents that damage DNA are the current major non-surgical means of treating cancer. However, many patients develop resistances to chemotherapy drugs in their later lives. The PI3K and Ras signaling pathways are deregulated in most cancers, so molecularly targeting PI3K-Akt or Ras-MAPK signaling sensitizes many cancer types to radiotherapy and chemotherapy, but the underlying molecular mechanisms have yet to be determined. During the multi-step processes of tumorigenesis, cancer cells gain the capability to disrupt the cell cycle checkpoint and increase the activity of CDK4/6 by disrupting the PI3K, Ras, p53, and Rb signaling circuits. Recent advances have demonstrated that PI3K-Akt-mTOR signaling controls FANCD2 and ribonucleotide reductase (RNR). FANCD2 plays an important role in the resistance of cells to DNA damage agents and the activation of DNA damage checkpoints, while RNR is critical for the completion of DNA replication and repair in response to DNA damage and replication stress. Regulation of FANCD2 and RNR suggests that cancer cells depend on PI3K-Akt-mTOR signaling for survival in response to DNA damage, indicating that the PI3K-AktmTOR pathway promotes resistance to chemotherapy and radiotherapy by enhancing DNA damage repair.

Keywords: PI3K; Akt; Target of rapamycin; Ribonucleotide reductase; p53; FANCD2; Drug resistance; DNA damage response; Chemotherapy; Radiotherapy; ATM

  • [1] Wullschleger, S., Loewith, R. and Hall, M.N. TOR signaling in growth and metabolism. Cell 124 (2006) 471–484. http://dx.doi.org/10.1016/j.cell.2006.01.016CrossrefGoogle Scholar

  • [2] Zoncu, R., Efeyan, A. and Sabatini, D.M. mTOR: From growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12 (2011) 21–35. http://dx.doi.org/10.1038/nrm3025CrossrefGoogle Scholar

  • [3] Laplante, M. and Sabatini, D.M. mTOR signaling in growth control and disease. Cell 149 (2012) 274–293. http://dx.doi.org/10.1016/j.cell.2012.03.017CrossrefGoogle Scholar

  • [4] Cornu, M., Albert, V. and Hall, M.N. mTOR in aging, metabolism, and cancer. Curr. Opin. Genet. Dev. 23 (2013) 53–62. http://dx.doi.org/10.1016/j.gde.2012.12.005CrossrefGoogle Scholar

  • [5] Hennessy, B.T., Smith, D.L., Ram, P.T., Lu, Y. and Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 4 (2005) 988–1004. http://dx.doi.org/10.1038/nrd1902Google Scholar

  • [6] Sarbassov, D.D., Guertin, D.A., Ali, S.M. and Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307 (2005) 1098–1101. http://dx.doi.org/10.1126/science.1106148CrossrefGoogle Scholar

  • [7] Hung, C.M., Garcia-Haro, L., Sparks, C.A. and Guertin, D.A. mTORdependent cell survival mechanisms. Cold Spring Harb, Perspect. Biol. 4 (2012) DOI: 10.1101/cshperspect.a008771. CrossrefGoogle Scholar

  • [8] Shaw, R.J. and Cantley, L.C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441 (2006) 424–430. http://dx.doi.org/10.1038/nature04869CrossrefGoogle Scholar

  • [9] Liu, W., Zhou, Y., Reske, S.N. and Shen, C. PTEN mutation: many birds with one stone in tumorigenesis. Anticancer Res. 28 (2008) 3613–3620. Google Scholar

  • [10] McCubrey, J.A., Steelman, L.S., Chappell, W.H., Abrams, S.L., Franklin, R.A., Montalto, G., Cervello, M., Libra, M., Candido, S., Malaponte, G., Mazzarino, M.C., Fagone, P., Nicoletti, F., Bäsecke, J., Mijatovic, S., Maksimovic-Ivanic, D., Milella, M., Tafuri, A., Chiarini, F., Evangelisti, C., Cocco, L. and Martelli, A.M. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 3 (2012) 1068–1111. Google Scholar

  • [11] Rodon, J., Dienstmann, R., Serra, V. and Tabernero, J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat. Rev. Clin. Oncol. 10 (2013) 143–153. http://dx.doi.org/10.1038/nrclinonc.2013.10CrossrefGoogle Scholar

  • [12] Bjornsti, M.A. and Houghton, P.J. The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer 4 (2004) 335–348. http://dx.doi.org/10.1038/nrc1362CrossrefGoogle Scholar

  • [13] Hanahan, D. and Weinberg, R.A. The hallmarks of cancer. Cell 100 (2000) 57–70. http://dx.doi.org/10.1016/S0092-8674(00)81683-9CrossrefGoogle Scholar

  • [14] Luo, J., Solimini, N.L. and Elledge, S.J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136 (2009) 823–837. http://dx.doi.org/10.1016/j.cell.2009.02.024CrossrefGoogle Scholar

  • [15] Dick, F.A. and Rubin, S.M. Molecular mechanisms underlying RB protein function. Nat. Rev. Mol. Cell Biol. 14 (2013) 297–306. http://dx.doi.org/10.1038/nrm3567CrossrefGoogle Scholar

  • [16] Chen, H.Z., Tsai, S.Y. and Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer 9 (2009) 785–797. http://dx.doi.org/10.1038/nrc2696CrossrefGoogle Scholar

  • [17] Manning, B.D. and Cantley, L.C. AKT/PKB signaling: navigating downstream. Cell 129 (2007) 1261–1274. http://dx.doi.org/10.1016/j.cell.2007.06.009CrossrefGoogle Scholar

  • [18] Heitman, J., Movva, N.R. and Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253 (1991) 905–909. http://dx.doi.org/10.1126/science.1715094CrossrefGoogle Scholar

  • [19] Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J.L., Bonenfant, D., Oppliger, W., Jenoe, P. and Hall, M.N. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10 (2002) 457–468. http://dx.doi.org/10.1016/S1097-2765(02)00636-6CrossrefGoogle Scholar

  • [20] Sarbassov, D.D., Ali, S.M. and Sabatini, D.M. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 17 (2005) 596–603. http://dx.doi.org/10.1016/j.ceb.2005.09.009CrossrefGoogle Scholar

  • [21] Soulard, A. and Hall, M.N. SnapShot: mTOR signaling. Cell 129 (2007) 434. http://dx.doi.org/10.1016/j.cell.2007.04.010CrossrefGoogle Scholar

  • [22] Polak, P. and Hall, M.N. mTOR and the control of whole body metabolism. Curr. Opin. Cell Biol. 21 (2009) 209–218. http://dx.doi.org/10.1016/j.ceb.2009.01.024CrossrefGoogle Scholar

  • [23] Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C.Y., He, X., MacDougald, O.A., You, M., Williams, B.O. and Guan, K.L. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126 (2006) 955–968. http://dx.doi.org/10.1016/j.cell.2006.06.055CrossrefGoogle Scholar

  • [24] Li, Y., Inoki, K., Vacratsis, P. and Guan, K.L. The p38 and MK2 kinase cascade phosphorylates tuberin, the tuberous sclerosis 2 gene product, and enhances its interaction with 14-3-3. J. Biol. Chem. 278 (2003) 13663–13671. http://dx.doi.org/10.1074/jbc.M300862200Google Scholar

  • [25] Lee, D.F., Kuo, H.P., Chen, C.T., Hsu, J.M., Chou, C.K., Wei, Y., Sun, H.L., Li, L.Y., Ping, B., Huang, W.C., He, X., Hung, J.Y., Lai, C.C., Ding, Q., Su, J.L., Yang, J.Y., Sahin, A.A., Hortobagyi, G.N., Tsai, F.J., Tsai, C.H. and Hung, M.C. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130 (2007) 440–455. http://dx.doi.org/10.1016/j.cell.2007.05.058CrossrefGoogle Scholar

  • [26] Astrinidis, A., Senapedis, W., Coleman, T.R. and Henske, E.P. Cell cycleregulated phosphorylation of hamartin, the product of the tuberous sclerosis complex 1 gene, by cyclin-dependent kinase 1/cyclin B. J. Biol. Chem. 278 (2003) 51372–51379. http://dx.doi.org/10.1074/jbc.M303956200CrossrefGoogle Scholar

  • [27] Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T.P. and Guan, K.L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10 (2008) 935–945. http://dx.doi.org/10.1038/ncb1753CrossrefGoogle Scholar

  • [28] Meric-Bernstam, F. and Gonzalez-Angulo, A.M. Targeting the mTOR signaling network for cancer therapy. J. Clin. Oncol. 27 (2009) 2278–2287. http://dx.doi.org/10.1200/JCO.2008.20.0766CrossrefGoogle Scholar

  • [29] Yap, T.A., Garrett, M.D., Walton, M.I., Raynaud, F., de Bono, J.S. and Workman, P. Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr. Opin. Pharmacol. 8 (2008) 393–412. http://dx.doi.org/10.1016/j.coph.2008.08.004CrossrefGoogle Scholar

  • [30] Moldovan, G.L. and D’Andrea, A.D. How the fanconi anemia pathway guards the genome. Annu. Rev. Genet. 43 (2009) 223–249. http://dx.doi.org/10.1146/annurev-genet-102108-134222CrossrefGoogle Scholar

  • [31] Kitao, H. and Takata, M. Fanconi anemia: a disorder defective in the DNA damage response. Int. J. Hematol. 93 (2011) 417–424. http://dx.doi.org/10.1007/s12185-011-0777-zCrossrefGoogle Scholar

  • [32] Kim, H. and D’Andrea, A.D. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 26 (2012) 1393–1408. http://dx.doi.org/10.1101/gad.195248.112CrossrefGoogle Scholar

  • [33] Kee, Y. and D’Andrea, A.D. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev. 24 (2010) 1680–1694. http://dx.doi.org/10.1101/gad.1955310CrossrefGoogle Scholar

  • [34] Knipscheer, P., Raschle, M., Smogorzewska. A., Enoiu, M., Ho, T.V., Scharer, O.D., Elledge, S.J. and Walter, J.C. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326 (2009) 1698–1701. http://dx.doi.org/10.1126/science.1182372CrossrefGoogle Scholar

  • [35] Joo, W., Xu, G., Persky, N.S., Smogorzewska, A., Rudge, D.G., Buzovetsky, O., Elledge, S.J. and Pavletich, N.P. Structure of the FANCIFANCD2 complex: insights into the Fanconi anemia DNA repair pathway. Science 333 (2011) 312–316. http://dx.doi.org/10.1126/science.1205805CrossrefGoogle Scholar

  • [36] Shen, C., Oswald, D., Phelps, D., Cam, H., Pelloski, C.E., Pang, Q. and Houghton, P.J. Regulation of FANCD2 by the mTOR pathway contributes to the resistance of cancer cells to DNA double strand breaks. Cancer Res. 73 (2013) 3393–3401. http://dx.doi.org/10.1158/0008-5472.CAN-12-4282CrossrefGoogle Scholar

  • [37] Kastan, M.B. and Bartek, J. Cell-cycle checkpoints and cancer. Nature 432 (2004) 316–323. http://dx.doi.org/10.1038/nature03097CrossrefGoogle Scholar

  • [38] Guo, F., Li, J., Du, W., Zhang, S., O’Connor, M., Thomas, G., Kozma, S., Zingarelli, B., Pang, Q. and Zheng, Y. mTOR regulates DNA damage response through NF-κB-mediated FANCD2 pathway in hematopoietic cells. Leukemia 27 (2013) 2040–2046. http://dx.doi.org/10.1038/leu.2013.93CrossrefGoogle Scholar

  • [39] Guo, F., Li, J., Zhang, S., Du, W., Amarachintha, S., Sipple, J., Phelan, J., Grimes, H.L., Zheng, Y. and Pang, Q. mTOR kinase inhibitor sensitizes T-cell lymphoblastic leukemia for chemotherapy-induced DNA damage via suppressing FANCD2 expression. Leukemia 28 (2014) 203–206. http://dx.doi.org/10.1038/leu.2013.215CrossrefGoogle Scholar

  • [40] Huang, M., Zhou, Z. and Elledge, S.J. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94 (1998) 595–605. http://dx.doi.org/10.1016/S0092-8674(00)81601-3CrossrefGoogle Scholar

  • [41] Zhao, X. and Rothstein, R. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc. Natl. Acad. Sci. USA 99 (2002) 3746–3751. http://dx.doi.org/10.1073/pnas.062502299CrossrefGoogle Scholar

  • [42] Kolberg, M., Strand, K.R., Graff, P. and Andersson, K.K. Structure, function, and mechanism of ribonucleotide reductases. Biochim. Biophys. Acta 1699 (2004) 1–34. http://dx.doi.org/10.1016/j.bbapap.2004.02.007CrossrefGoogle Scholar

  • [43] Shen, C., Lancaster, C.S., Shi, B., Guo, H., Thimmaiah, P. and Bjornsti, M.A. TOR signaling is a determinant of cell survival in response to DNA damage. Mol. Cell. Biol. 27 (2007) 7007–7017. http://dx.doi.org/10.1128/MCB.00290-07CrossrefGoogle Scholar

  • [44] Tanaka, H., Arakawa, H., Yamaguchi, T., Shiraishi, K., Fukuda, S., Matsui, K., Takei, Y. and Nakamura, Y. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404 (2000) 42–49. http://dx.doi.org/10.1038/35003506CrossrefGoogle Scholar

  • [45] D’Angiolella, V., Donato, V., Forrester, F.M., Jeong. Y.T., Pellacani, C., Kudo, Y., Saraf, A., Florens, L., Washburn, M.P. and Pagano, M. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 149 (2012) 1023–1034. http://dx.doi.org/10.1016/j.cell.2012.03.043CrossrefGoogle Scholar

  • [46] Imataka, H., Gradi, A. and Sonenberg, N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17 (1998) 7480–7489. http://dx.doi.org/10.1093/emboj/17.24.7480CrossrefGoogle Scholar

  • [47] Chow, L.M. and Baker, S.J. PTEN function in normal and neoplastic growth. Cancer Lett. 241 (2006) 184–196. http://dx.doi.org/10.1016/j.canlet.2005.11.042CrossrefGoogle Scholar

  • [48] Graat, H.C., Carette, J.E., Schagen, F.H., Vassilev, L.T., Gerritsen, W.R., Kaspers, G.J., Wuisman, P.I. and van Beusechem, V.W. Enhanced tumor cell kill by combined treatment with a small-molecule antagonist of mouse double minute 2 and adenoviruses encoding p53. Mol. Cancer Ther. 6 (2007) 1552–1561. http://dx.doi.org/10.1158/1535-7163.MCT-06-0631CrossrefGoogle Scholar

  • [49] Wang, W. and El-Deiry, W.S. Restoration of p53 to limit tumor growth. Curr. Opin. Oncol. 20 (2008) 90–96. http://dx.doi.org/10.1097/CCO.0b013e3282f31d6fCrossrefGoogle Scholar

  • [50] Shepard, H.M., Jin, P., Slamon, D.J., Pirot, Z. and Maneval, D.C. Herceptin. Handb. Exp. Pharmacol. 181 (2008) 183–219. http://dx.doi.org/10.1007/978-3-540-73259-4_9CrossrefGoogle Scholar

  • [51] Rivera, F., Vega-Villegas, M.E., Lopez-Brea, M.F. and Marquez, R. Current situation of Panitumumab, Matuzumab, Nimotuzumab and Zalutumumab. Acta Oncol. 47 (2008) 9–19. http://dx.doi.org/10.1080/02841860701704724CrossrefGoogle Scholar

  • [52] Chresta, C.M., Davies, B.R., Hickson, I., Harding, T., Cosulich, S., Critchlow, S.E., Vincent, J.P., Ellston, R., Jones, D., Sini, P., James, D., Howard, Z., Dudley, P., Hughes, G., Smith, L., Maguire, S., Hummersone, M., Malagu, K., Menear, K., Jenkins, R., Jacobsen, M., Smith, G.C., Guichard, S. and Pass, M. AZD8055 is a potent, selective, and orally bioavailable ATPcompetitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 70 (2010) 288–298. http://dx.doi.org/10.1158/0008-5472.CAN-09-1751CrossrefGoogle Scholar

  • [53] Sangai, T., Akcakanat, A., Chen, H., Tarco, E., Wu, Y., Do, K.A., Miller, T.W., Arteaga, C.L., Mills, G.B., Gonzalez-Angulo, A.M. and Meric-Bernstam, F. Biomarkers of response to Akt inhibitor MK-2206 in breast cancer. Clin. Cancer Res. 18 (2012) 5816–5828. http://dx.doi.org/10.1158/1078-0432.CCR-12-1141Google Scholar

  • [54] Vousden, K.H. and Lane, D.P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 8 (2007) 275–283. http://dx.doi.org/10.1038/nrm2147CrossrefGoogle Scholar

About the article

Published Online: 2014-06-22

Published in Print: 2014-06-01

Citation Information: Cellular and Molecular Biology Letters, Volume 19, Issue 2, Pages 233–242, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-014-0191-7.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Hao Wang, Xiaoyu Mu, Hua He, and Xiao-Dong Zhang
Trends in Pharmacological Sciences, 2017
Yun Huang, Guohua Liu, Feng Yang, Xiaowei Xing, Ying Li, Zhijun Huang, and Hong Yuan
Cancer Cell International, 2017, Volume 17, Number 1
Lan Deng, Ling Jiang, Xiang-hua Lin, Kuo-Fu Tseng, Yuan Liu, Xing Zhang, Rui-hong Dong, Zhi-gang Lu, and Xiu-ju Wang
Acta Pharmacologica Sinica, 2017, Volume 38, Number 3, Page 382
Ranran Kong, Yuefeng Ma, Jie Feng, Shaomin Li, Wei Zhang, Jiantao Jiang, Jin Zhang, Zhe Qiao, Xiaoping Yang, and Bin Zhou
Cellular & Molecular Biology Letters, 2016, Volume 21, Number 1
Hongxia Li, Li Juan, Leiming Xia, Yi Wang, Yangyi Bao, and Guoping Sun
Medical Science Monitor, 2016, Volume 22, Page 2624
Camila L. Amaral, Lidia B. Freitas, Rodrigo E. Tamura, Mariana R. Tavares, Isadora C. B. Pavan, Marcio C. Bajgelman, and Fernando M. Simabuco
BMC Cancer, 2016, Volume 16, Number 1
Sen-Ling Feng, Zhong-Wen Yuan, Xiao-Jun Yao, Wen-Zhe Ma, Liang Liu, Zhong-Qiu Liu, and Ying Xie
Pharmacological Research, 2016, Volume 110, Page 193
Wenzhe Ma, Senling Feng, Xiaojun Yao, Zhongwen Yuan, Liang Liu, and Ying Xie
Scientific Reports, 2016, Volume 5, Number 1
Rajamanickam Baskar, Jiawen Dai, Nei Wenlong, Richard Yeo, and Kheng-Wei Yeoh
Frontiers in Molecular Biosciences, 2014, Volume 1

Comments (0)

Please log in or register to comment.
Log in