Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 19, Issue 3

Issues

Expression profiles uncover the relationship between erythropoietin and cell proliferation in rat hepatocytes after a partial hepatectomy

Jihong Zhang / Yajuan Yang / Tingting He / Yunqing Liu / Yun Zhou / Yongkang Chen / Cunshuan Xu
Published Online: 2014-09-12 | DOI: https://doi.org/10.2478/s11658-014-0198-0

Abstract

Erythropoietin (EPO) has a beneficial effect on hepatic cell proliferation during liver regeneration. However, the underlying mechanism has not yet been elucidated. To uncover the proliferation response of EPO in rat liver regeneration after partial hepatectomy (PH) at the cellular level, hepatocytes (HCs) were isolated using Percoll density gradient centrifugation. The genes of the EPO-mediated signaling pathway and the target genes of the transcription factor (TF) in the pathway were identified in a pathway and TF database search. Their expression profiles were then detected using Rat Genome 230 2.0 Microarray. The results indicated that the EPO-mediated signaling pathway is involved in 19 paths and that 124 genes participate, of which 32 showed significant changes and could be identified as liver regeneration-related genes. In addition, 443 targets regulated by the TFs of the pathway and 60 genes associated with cell proliferation were contained in the array. Subsequently, the synergetic effect of these genes in liver regeneration was analyzed using the E(t) mathematical model based on their expression profiles. The results demonstrated that the E(t) values of paths 3, 8, 12 and 14–17 were significantly strengthened in the progressing phase of liver regeneration through the RAS/MEK/ERK or PI3K/AκT pathways. The synergetic effect of the target genes, in parallel with target-related cell proliferation, was also enhanced 12–72 h after PH, suggesting a potential positive effect of EPO on HC proliferation during rat liver regeneration. These data imply that the EPO receptor may allow EPO to promote HC proliferation through paths 3, 8, 12 and 14–17, mediating the RAS/MEK/ERK and PI3K/AκT pathways in rat liver regeneration after PH.

Keywords: Rat liver regeneration; Erythropoietin; Rat Genome 230 2.0 Microarray; Gene expression profiles; Gene synergetic effect

  • [1] Taub, R. Liver regeneration: from myth to mechanism. Nat. Rev. Mol. Cell. Biol. 5 (2004) 836–847. http://dx.doi.org/10.1038/nrm1489CrossrefGoogle Scholar

  • [2] Michalopoulos, G.K. Liver regenetation. J. Cell Physiol. 213 (2007) 286–300. http://dx.doi.org/10.1002/jcp.21172CrossrefGoogle Scholar

  • [3] Staudinger, J.L. and LIchti, K. Cell signaling and nuclear receptors: new opportunities for molecular pharmaceuticals in liver disease. Mol. Pharm. 5 (2008) 17–34. http://dx.doi.org/10.1021/mp700098cCrossrefGoogle Scholar

  • [4] Sun, Y., Deng, X., Li, W., Yan, Y., Wei, H., Jiang, Y. and He, F. Liver proteome analysis of adaptive response in rat immediately after partial hepatectomy. Proteomics 7 (2007) 4398–4407. http://dx.doi.org/10.1002/pmic.200600913CrossrefGoogle Scholar

  • [5] Jarnagin, W.R., Gonen, M., Fong, Y., DeMatteo, R.P., Ben-Porat, L., Little, S., Corvera, C., Weber, S. and Blumgart, L.H. Improvement in perioperative outcome after hepatic resection: analysis of 1803 consecutive cases over the past decade. Ann. Surg. 236 (2002) 397–406. http://dx.doi.org/10.1097/00000658-200210000-00001CrossrefGoogle Scholar

  • [6] Belghiti, J., Hiramatsu, K., Benoist, S., Massault, P., Sauvanet, A. and Farges, O. Seven hundred forty-seven hepatectomies in the 1990s: an update to evaluate the actual risk of liver resection. J. Am. Coll. Surg. 191 (2000) 38–46. http://dx.doi.org/10.1016/S1072-7515(00)00261-1CrossrefGoogle Scholar

  • [7] Garcea, G. and Maddern, G.J. Liver failure after major hepatic resection. J. Hepatobiliary Pancreat. Surg. 16 (2009) 145–155. http://dx.doi.org/10.1007/s00534-008-0017-yCrossrefGoogle Scholar

  • [8] Coleman, T. and Brines, M. Science review: recombinant human erythropoietin in critical illness: a role beyond anemia? Crit. Care 8 (2004) 337–341. http://dx.doi.org/10.1186/cc2897CrossrefGoogle Scholar

  • [9] Farrell, F. and Lee, A. The erythropoietin receptor and its expression in tumor cells and other tissues. Oncologist S5 (2004) 18–30. http://dx.doi.org/10.1634/theoncologist.9-90005-18CrossrefGoogle Scholar

  • [10] Drüeke, T.B., Locatelli, F., Clyne, N., Eckardt, K.U., Macdougall, I.C., Tsakiris, D., Burger, H.U. and Scherhag, A. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 355 (2006) 2071–2084. http://dx.doi.org/10.1056/NEJMoa062276CrossrefGoogle Scholar

  • [11] Siebert, N., Xu, W., Grambow, E., Zechner, D. and Vollmar, B. Erythropoietin improves skin wound healing and activates the TGF-β signaling pathway. Lab. Invest. 91 (2011) 1753–1765. http://dx.doi.org/10.1038/labinvest.2011.125CrossrefGoogle Scholar

  • [12] Liu, N., Tian, J., Wang, W., Cheng, J., Hu, D. and Zhang, J. Effect and mechanism of erythropoietin on mesenchymal stem cell proliferation in vitro under the acute kidney injury microenvironment. Exp. Biol. Med. 236 (2011) 1093–1099. http://dx.doi.org/10.1258/ebm.2011.011001CrossrefGoogle Scholar

  • [13] Sakanaka, M., Wen, T.C., Matsuda, S., Masuda, S., Morishita, E., Nagao, M. and Sasaki, R. In vivo evidence that erythropoetin protects neurons from ischemic damage. Proc. Natl. Acad. Sci. USA 95 (1998) 4635–4640. http://dx.doi.org/10.1073/pnas.95.8.4635CrossrefGoogle Scholar

  • [14] Xi, J.Q., Meng, X.K., Zhang, J.J. and Zhang, M. Erythropoletin promotes hepatic regeneration after partial hepatectomy in rats. Chin. J. Clinicians 5 (2011) 967–970. Google Scholar

  • [15] Schmeding, M., Neumann, U.P., Boas-Knoop, S., Spinelli, A. and Neuhaus, P. Erythropoietin reduces ischemia-reperfusion injury in the rat liver. Eur. Surg. Res. 39 (2007) 189–197. http://dx.doi.org/10.1159/000101009CrossrefGoogle Scholar

  • [16] Schmeding, M., Hunold, G., Ariyakhagorn, V., Rademacher, S., Boas-Knoop, S., Lippert, S., Neuhaus, P. and Neumann, U.P. Erythropoietin reduces ischemia-reperfusion injury after liver transplantation in rats. Transpl. Int. 22 (2009) 738–746. http://dx.doi.org/10.1111/j.1432-2277.2009.00861.xCrossrefGoogle Scholar

  • [17] Bockhorn, M., Fingas, C.D., Rauen, U., Canbay, A., Sotiropoulos, G.C., Frey, U., Sheu, S.Y., Wohlschläger, J., Broelsch, C.E. and Schlaak, J.F. Erythropoietin treatment improves liver regeneration and survival in rat models of extended liver resection and living donor liver transplantation. Transplantation 86 (2008) 1578–1585. http://dx.doi.org/10.1097/TP.0b013e31818b22b4CrossrefGoogle Scholar

  • [18] Bader, A., Pavlica, S., Deiwick, A., Lotkova, H., Kucera, O., Darsow, K., Bartel, S., Schulze, M., Lange, H.A. and Cervinkova, Z. Proteomic analysis to display the effect of low doses of erythropoietin on rat liver regeneration. Life Sci. 89 (2011) 827–833. http://dx.doi.org/10.1016/j.lfs.2011.08.002CrossrefGoogle Scholar

  • [19] Greif, F., Ben-Ari, Z., Taya, R., Pappo, O., Kurtzwald, E., Cheporko, Y., Ravid, A. and Hochhauser, E. Dual effect of erythropoietin on liver protection and regeneration after subtotal hepatectomy in rats. Liver Transpl. 16 (2010) 631–638. Google Scholar

  • [20] Vassiliou, I., Lolis, E., Nastos, C., Tympa, A., Theodosopoulos, T., Dafnios, N., Fragulidis, G., Frangou, M., Kondi-Pafiti, A. and Smyrniotis, V. The combined effect of erythropoietin and granulocyte macrophage colony stimulating factor on liver regeneration after major hepatectomy in rats. World J. Surg. Oncol. 8 (2010) 57. http://dx.doi.org/10.1186/1477-7819-8-57CrossrefGoogle Scholar

  • [21] Naughton, B.A., Kaplan, S.M., Roy, M., Burdowski, A.J., Gordon, A.S. and Piliero, S.J. Hepatic regeneration and erythropoietin production in the rat. Science 196 (1977) 301–302. http://dx.doi.org/10.1126/science.847471CrossrefGoogle Scholar

  • [22] Klemm, K., Eipel, C., Cantré, D., Abshagen, K., Menger, M.D. and Vollmar, B. Multiple doses of erythropoietin impair liver regeneration by increasing TNF-alpha, the Bax to Bcl-xL ratio and apoptotic cell death. PLoS One 3 (2008) e3924. http://dx.doi.org/10.1371/journal.pone.0003924CrossrefGoogle Scholar

  • [23] Higgins, G.M. and Anderson, R.M. Experimental pathology of the liver: restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. 12 (1931) 186–202. Google Scholar

  • [24] Xu, C., Yang, Y., Yang, J., Chen, X. and Wang, G. Analysis of the role of the integrin signaling pathway in hepatocytes during rat liver regeneration. Cell. Mol. Biol. Lett. 17 (2012) 274–288. http://dx.doi.org/10.2478/s11658-012-0011-xCrossrefGoogle Scholar

  • [25] Xu, C.S., Chang, C.F., Yuan, J.Y., Li, W.Q., Han, H.P., Yang, K.J., Zhao, L.F., Li, Y.C., Zhang, H.Y., Rahman, S. and Zhang, J.B. Expressed genes in regenerating rat liver after partial hepatectomy. World J. Gastroenterol. 11 (2005) 2932–2940. CrossrefGoogle Scholar

  • [26] Knepp, J.H., Geahr, M.A., Forman, M.S. and Valsamakis, A. Comparison of automated and manual nucleic acid extraction methods for detection of enterovirus RNA. J. Clin. Microbiol. 41 (2003) 3532–3536. http://dx.doi.org/10.1128/JCM.41.8.3532-3536.2003CrossrefGoogle Scholar

  • [27] Mulrane, L., Rexhepaj, E., Smart, V., Callanan, J.J., Orhan, D., Eldem, T., Mally, A., Schroeder, S., Meyer, K., Wendt, M., O’Shea, D. and Gallagher, W.M. Creation of a digital slide and tissue microarray resource from a multiinstitutional predictive toxicology study in the rat: an initial report from the PredTox group. Exp. Toxicol. Pathol. 60 (2008) 235–245. http://dx.doi.org/10.1016/j.etp.2007.12.004CrossrefGoogle Scholar

  • [28] Nikitin, A., Egorov, S., Daraselia, N. and Mazo, I. Pathway studio-the analysis and navigation of molecular networks. Bioinformatics 19 (2003) 2155–2157. http://dx.doi.org/10.1093/bioinformatics/btg290CrossrefGoogle Scholar

  • [29] Wang, G.P. and Xu, C.S. Reference gene selection for real-time RT-PCR in eight kinds of rat regenerating hepatic cells. Mol. Biotechnol. 46 (2010) 49–57. http://dx.doi.org/10.1007/s12033-010-9274-5CrossrefGoogle Scholar

  • [30] Chalmers, J.J., Zborowski, M., Sun, L. and Moore, L. Flow through, immunomagnetic cell separation. Biotechnol. Prog. 14 (1998) 141–148. http://dx.doi.org/10.1021/bp970140lCrossrefGoogle Scholar

  • [31] Doniger, S.W., Salomonis, N., Dahlquist, K.D., Vranizan, K., Lawlor, S.C. and Conklin, B.R. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol. 4 (2003) R7. http://dx.doi.org/10.1186/gb-2003-4-1-r7CrossrefGoogle Scholar

  • [32] Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H. and Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27 (1999) 29–34. http://dx.doi.org/10.1093/nar/27.1.29CrossrefGoogle Scholar

  • [33] Zhang, J., Ma, C., Liu, Y., Yang, G., Jiang, Y., Xu, C. Interleukin 18 accelerates the hepatic cell proliferation in rat liver regeneration after partial hepatectomy. Gene 537 (2014) 230–237. http://dx.doi.org/10.1016/j.gene.2013.12.062CrossrefGoogle Scholar

  • [34] Xu, C.S., Jiang, Y., Zhang, L.X., Chang, C.F., Wang, G.P., Shi, R.J. and Yang, Y.J. The role of Kupffer cells in rat liver regeneration revealed by cell-specific microarray analysis. J. Cell Biochem. 113 (2012) 229–237. http://dx.doi.org/10.1002/jcb.23348CrossrefGoogle Scholar

  • [35] Xu, C., Chen, X., Chang, C., Wang, G., Wang, W., Zhang, L., Zhu, Q. and Wang, L. Characterization of transcriptional profiling of Kupffer cells during liver regeneration in rats. Cell Biol. Int. 36 (2012) 721–732. http://dx.doi.org/10.1042/CBI20110104CrossrefGoogle Scholar

  • [36] Jiang, Y., Zhang, L.X., Chang, C.F., Wang, G.P., Shi, R.J., Yang, Y.J. and Xu, C.S. The number of the genes in a functional category matters during rat liver regeneration after partial hepatectomy. J. Cell Biochem. 112 (2011) 3194–3205. http://dx.doi.org/10.1002/jcb.23246CrossrefGoogle Scholar

  • [37] Xu, C.S., Chen, X.G., Chang, C.F., Wang, G.P., Wang, W.B., Zhang, L.X., Zhu, Q.S. and Wang, L. Analysis of time-course gene expression profiles of sinusoidal endothelial cells during liver regeneration in rats. Mol. Cell Biochem. 350 (2011) 215–227. http://dx.doi.org/10.1007/s11010-010-0701-5CrossrefGoogle Scholar

  • [38] Xu, C., Chen, X., Chang, C., Wang, G., Wang, W., Zhang, L., Zhu, Q. and Wang, L. Genome-wide analysis of gene expression in dendritic cells from rat regenerating liver after partial hepatectomy. Cell Biochem. Funct. 29 (2011) 255–264. http://dx.doi.org/10.1002/cbf.1748CrossrefGoogle Scholar

  • [39] Xu, C., Chen, X., Chang, C., Wang, G., Wang, W., Zhang, L., Zhu, Q., Wang, L. and Zhang, F. Transcriptome analysis of hepatocytes after partial hepatectomy in rats. Dev. Genes Evol. 220 (2010) 263–274. http://dx.doi.org/10.1007/s00427-010-0345-1CrossrefGoogle Scholar

  • [40] Christ, B. and Pelz, S. (2013) Implication of hepatic stem cells in functional liver repopulation. Cytometry A 83 (1999) 90–102. CrossrefGoogle Scholar

  • [41] Chen, X., Xu, C., Zhang, F. and Ma, J. Microarray approach reveals the relevance of interferon signaling pathways with rat liver restoration post 2/3 hepatectomy at cellular level. J. Interferon Cytokine Res. 30 (2010) 525–539. http://dx.doi.org/10.1089/jir.2009.0111CrossrefGoogle Scholar

  • [42] Ogiso, T., Nagaki, M., Takai, S., Tsukada, Y., Mukai, T., Kimura, K. and Moriwaki, H. Granulocyte colony-stimulating factor impairs liver regeneration in mice through the up-regulation of interleukin-1beta. J. Hepatol. 47 (2007) 816–825. http://dx.doi.org/10.1016/j.jhep.2007.06.017Google Scholar

  • [43] Koury, S.T., Bondurant, M.C., Koury, M.J., Semenza, G.L. Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood 77 (1991) 2497–2503. Google Scholar

  • [44] Rankin, E.B., Biju, M.P., Liu, Q., Unger, T.L., Rha, J., Johnson, R.S., Simon, M.C., Keith, B. and Haase, V.H. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J. Clin. Invest. 117 (2007) 1068–1077. http://dx.doi.org/10.1172/JCI30117CrossrefGoogle Scholar

  • [45] Rychtrmoc, D., Hubálková, L., Víšková, A., Libra, A., Bunček, M. and Červinková, Z. Transcriptome temporal and functional analysis of liver regeneration termination. Physiol. Res. 61 (2012) S77–92. Google Scholar

  • [46] Dransfeld, O., Gehrmann, T., Köhrer, K., Kircheis, G., Holneicher, C., Häussinger, D. and Wettstein, M. Oligonucleotide microarray analysis of differential transporter regulation in the regenerating rat liver. Liver Int. 25 (2005) 1243–1258. http://dx.doi.org/10.1111/j.1478-3231.2005.01158.xCrossrefGoogle Scholar

  • [47] Fukuhara, Y., Hirasawa, A., Li, X.K., Kawasaki, M., Fujino, M., Funeshima, N., Katsuma, S., Shiojima, S., Yamada, M., Okuyama, T., Suzuki, S. and Tsujimoto, G. Gene expression profile in the regenerating rat liver after partial hepatectomy. J. Hepatol. 38 (2003) 784–792. http://dx.doi.org/10.1016/S0168-8278(03)00077-1CrossrefGoogle Scholar

  • [48] Li M.H., Zhou X.C., Mei J.X., Geng X.F., Zhou Y., Zhang W.M., Xu C.S. Study on the activity of the signaling pathways regulating hepatocytes from G0 phase into G1 phase during rat liver regeneration. Cell. Mol. Biol. Lett. DOI: 10.2478/s11658-014-0188-2. CrossrefGoogle Scholar

  • [49] Kesselring, F., Spicher, K. and Porzig, H. Changes in G protein pattern and in G protein-dependent signaling during erythropoietin- and dimethylsulfoxide-induced differentiation of murine erythroleukemia cells. Blood 84 (1994) 4088–4098. Google Scholar

  • [50] Guillard, C., Chrétien, S., Pelus, A.S., Porteu, F., Muller, O., Mayeux, P. and Duprez, V. Activation of the mitogen-activated protein kinases Erk1/2 by erythropoietin receptor via a G(i)protein beta gamma-subunit-initiated pathway. J. Biol. Chem. 278 (2003) 11050–11056. http://dx.doi.org/10.1074/jbc.M208834200CrossrefGoogle Scholar

  • [51] Zhao, W., Kitidis, C., Fleming, M.D., Lodish, H.F. and Ghaffari, S. Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood 107 (2006) 907–915. http://dx.doi.org/10.1182/blood-2005-06-2516CrossrefGoogle Scholar

About the article

Published Online: 2014-09-12

Published in Print: 2014-09-01


Citation Information: Cellular and Molecular Biology Letters, Volume 19, Issue 3, Pages 331–346, ISSN (Online) 1689-1392, ISSN (Print) 1425-8153, DOI: https://doi.org/10.2478/s11658-014-0198-0.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yong-Bin He, Sheng-Yao Liu, Song-Yun Deng, Li-Peng Kuang, Shao-Yong Xu, Zhe Li, Lei Xu, Wei Liu, and Guo-Xin Ni
Stem Cells International, 2019, Volume 2019, Page 1
[2]
Gaiping Wang, Shasha Chen, Congcong Zhao, Xiaofang Li, Ling Zhang, Weiming Zhao, Cuifang Chang, and Cunshuan Xu
Gene, 2016, Volume 576, Number 2, Page 782

Comments (0)

Please log in or register to comment.
Log in