Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /

IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

See all formats and pricing
More options …
Volume 19, Issue 3

CD39/NTPDase-1 expression and activity in human umbilical vein endothelial cells are differentially regulated by leaf extracts from Rubus caesius and Rubus idaeus

Dominika Dudzinska / Boguslawa Luzak / Magdalena Boncler / Joanna Rywaniak / Dorota Sosnowska / Anna Podsedek / Cezary Watala
Published Online: 2014-09-12 | DOI: https://doi.org/10.2478/s11658-014-0202-8


Many experimental studies have demonstrated the favorable biological activities of plants belonging to the genus Rubus, but little is known of the role of Rubus leaf extracts in the modulation of the surface membrane expression and activity of endothelial apyrase. The aim of this study was to assess the influence of 1–15 μg/ml Rubus extracts on CD39 expression and enzymatic activity, and on the activation (ICAM-1 expression) and viability of human umbilical vein endothelial cells (HUVEC). The polyphenolic contents and antioxidative capacities of extracts from dewberry (R. caesius L.) and raspberry (R. idaeus L.) leaves were also investigated. The techniques applied were flow cytometry (endothelial surface membrane expression of ICAM-1 and CD39), malachite green assay (CD39 activity), HPLC-DAD (quantitative analysis of polyphenolic extract), ABTS, DPPH and FRAP spectrometric assays (antioxidant capacity), and the MTT test (cell viability). Significantly increased CD39 expressions and significantly decreased ATPDase activities were found in the cells treated with 15 μg/ml of either extract compared to the results for the controls. Neither of the extracts affected cell proliferation, but both significantly augmented endothelial cell ICAM-1 expression. The overall antioxidant capacities of the examined extracts remained relatively high and corresponded well to the determined total polyphenol contents. Overall, the results indicate that under in vitro conditions dewberry and raspberry leaf extracts have unfavorable impact on endothelial cells.

Keywords: HUVEC; Endothelial cells; Polyphenolic leaf extracts; Rubus; Dewberry; Raspberry; Polyphenols; CD39/ATPDase; ICAM-1; Adhesive molecules; Cell activation

  • [1] Marcus, A.J., Safier, L.B., Broekman, M.J., Islam, N., Fliessbach, J.H., Hajjar, K.A., Kaminski, W.E., Jendraschak, E., Silverstein, R.L. and von Schacky, C. Thrombosis and inflammation as multicellular processes: significance of cell-cell interactions. Thromb. Haemost. 74 (1995) 213–217. Google Scholar

  • [2] Preissner, K.T. Anticoagulant potential of endothelial cell membrane components. Haemostasis 18 (1988) 271–300. Google Scholar

  • [3] Marcus, A.J., Safier, L.B., Hajjar, K.A., Ullman, H.L., Islam, N., Broekman, M.J. and Eiroa, A.M. Inhibition of platelet function by an aspirin-insensitive endothelial cell ADPase. Thromboregulation by endothelial cells. J Clin. Invest. 88 (1991) 1690–1696. http://dx.doi.org/10.1172/JCI115485CrossrefGoogle Scholar

  • [4] Bakker, W.W., Poelstra, K., Barradas, M.A. and Mikhailidis, D.P. Platelets and ectonucleotidases. Platelets 5 (1994) 121–129. http://dx.doi.org/10.3109/09537109409005523CrossrefGoogle Scholar

  • [5] Marcus, A.J. and Safier, L.B. Thromboregulation: multicellular modulation of platelet reactivity in hemostasis and thrombosis. FASEB J. 7 (1993) 516–522. Google Scholar

  • [6] Plesner, L. Ecto-ATPases: identities and functions. Int. Rev. Cytol. 158 (1995) 141–214. http://dx.doi.org/10.1016/S0074-7696(08)62487-0CrossrefGoogle Scholar

  • [7] Robson, S.C., Kaczmarek, E., Siegel, J.B., Candinas, D., Koziak, K., Millan, M., Hancock, W.W. and Bach, F.H. Loss of ATP diphosphohydrolase activity with endothelial cell activation. J. Exp. Med. 185 (1997) 153–163. http://dx.doi.org/10.1084/jem.185.1.153CrossrefGoogle Scholar

  • [8] Garbacki, N., Kinet, M., Nusgens, B., Desmecht, D. and Damas, J. Proanthocyanidins, from Ribes nigrum leaves, reduce endothelial adhesion molecules ICAM-1 and VCAM-1. J. Inflamm. (Lond). 2 (2005) 9. http://dx.doi.org/10.1186/1476-9255-2-9CrossrefGoogle Scholar

  • [9] Leeuwenberg, J.F., Smeets, E.F., Neefjes, J.J., Shaffer, M.A., Cinek, T., Jeunhomme, T.M., Ahern, T.J. and Buurman, W.A. E-selectin and intercellular adhesion molecule-1 are released by activated human endothelial cells in vitro. Immunology 77 (1992) 543–549. Google Scholar

  • [10] Kim, J.H., Auger, C., Kurita, I., Anselm, E., Rivoarilala, L.O., Lee, H.J., Lee, K.W. and Schini-Kerth, V.B. Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase. Nitric Oxide 35C (2013) 54–64. http://dx.doi.org/10.1016/j.niox.2013.08.002CrossrefGoogle Scholar

  • [11] Torres-Urrutia, C., Guzman, L., Schmeda-Hirschmann, G., Moore-Carrasco, R., Alarcon, M., Astudillo, L., Gutierrez, M., Carrasco, G., Yuri, J.A., Aranda, E. and Palomo, I. Antiplatelet, anticoagulant, and fibrinolytic activity in vitro of extracts from selected fruits and vegetables. Blood Coagul. Fibrinolysis 22 (2011) 197–205. http://dx.doi.org/10.1097/MBC.0b013e328343f7daCrossrefGoogle Scholar

  • [12] Suh, J.H., Romain, C., Gonzalez-Barrio, R., Cristol, J.P., Teissedre, P.L., Crozier, A. and Rouanet, J.M. Raspberry juice consumption, oxidative stress and reduction of atherosclerosis risk factors in hypercholesterolemic golden Syrian hamsters. Food Funct. 2 (2011) 400–405. http://dx.doi.org/10.1039/c1fo10047eCrossrefGoogle Scholar

  • [13] Liu, Z., Schwimer, J., Liu, D., Lewis, J., Greenway, F.L., York, D.A. and Woltering, E.A. Gallic acid is partially responsible for the antiangiogenic activities of Rubus leaf extract. Phytother. Res. 20 (2006) 806–813. http://dx.doi.org/10.1002/ptr.1966CrossrefGoogle Scholar

  • [14] Rojas-Vera, J., Patel, A.V. and Dacke, C.G. Relaxant activity of raspberry (Rubus idaeus) leaf extract in guinea-pig ileum in vitro. Phytother. Res. 16 (2002) 665–668. http://dx.doi.org/10.1002/ptr.1040CrossrefGoogle Scholar

  • [15] Durgo, K., Belscak-Cvitanovic, A., Stancic, A., Franekic, J. and Komes, D. The bioactive potential of red raspberry (Rubus idaeus L.) leaves in exhibiting cytotoxic and cytoprotective activity on human laryngeal carcinoma and colon adenocarcinoma. J. Med. Food 15 (2012) 258–268. http://dx.doi.org/10.1089/jmf.2011.0087CrossrefGoogle Scholar

  • [16] Martini, S., D’Addario, C., Colacevich, A., Focardi, S., Borghini, F., Santucci, A., Figura, N. and Rossi, C. Antimicrobial activity against Helicobacter pylori strains and antioxidant properties of blackberry leaves (Rubus ulmifolius) and isolated compounds. Int. J. Antimicrob. Agents 34 (2009) 50–59. http://dx.doi.org/10.1016/j.ijantimicag.2009.01.010CrossrefGoogle Scholar

  • [17] Bordonaba J.G. and Terry L.A. Biochemical profiling and chemometric analysis of seventeen UK-grown black currant cultivars. J. Agric. Food Chem. 56 (2008) 7422–7430. http://dx.doi.org/10.1021/jf8009377CrossrefGoogle Scholar

  • [18] Swain T and Hillis W.E. The phenolics constituents of Prunus domestica II. J. Sci. Food Agric. 10 (1959) 63–68. http://dx.doi.org/10.1002/jsfa.2740100110CrossrefGoogle Scholar

  • [19] Rosch, D., Bergmann, M., Knorr, D. and Kroh, L.W. Structure-antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activity of sea buckthorn juice. J. Agric. Food Chem. 51 (2003) 4233–4239. http://dx.doi.org/10.1021/jf0300339CrossrefGoogle Scholar

  • [20] Hartzfeld, P.W., Forkner, R., Hunter, M.D. and Hagerman, A.E. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. J. Agric. Food Chem. 50 (2002) 1785–1790. http://dx.doi.org/10.1021/jf0111155CrossrefGoogle Scholar

  • [21] Dyrby, M., Westergaard, N. and Stapelfeldt, H. Light and heat sensitivity of red cabbage extract in soft drink model systems. Food Chem. 72 (2001) 431–437. http://dx.doi.org/10.1016/S0308-8146(00)00251-XCrossrefGoogle Scholar

  • [22] Awah, F.M., Uzoegwu, P.N., Ifeonu, P., Oyugi, J.O., Rutherford, J., Yao, X., Fehrmann, F., Fowke, K.R. and Eze, M.O. Free radical scavenging activity, phenolic contents and cytotoxicity of selected Nigerian medicinal plants. Food Chem. 131 (2012) 1279–1286. http://dx.doi.org/10.1016/j.foodchem.2011.09.118CrossrefGoogle Scholar

  • [23] Nardini, M., Cirillo, M., Natella, F., Mencarelli, D., Comisso, A. and Scaccini, C. Detection of bound phenolic acids: Prevention by ascorbic acid and ethylenediaminetetraacetic acid of degradation of phenolic acid during alkaline hydrolysis. Food Chem. 79 (2002) 119–124. http://dx.doi.org/10.1016/S0308-8146(02)00213-3CrossrefGoogle Scholar

  • [24] Zadernowski, R., Naczk, M. and Nesterowicz, J. Phenolic acid profiles in some small berries. J. Agric. Food Chem. 53 (2005) 2118–2124. http://dx.doi.org/10.1021/jf040411pCrossrefGoogle Scholar

  • [25] Benzie, I.F. and Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239 (1996) 70–76. http://dx.doi.org/10.1006/abio.1996.0292CrossrefGoogle Scholar

  • [26] Kim, D.O., Lee, K.W., Lee, H.J. and Lee, C.Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem. 50 (2002) 3713–3717. http://dx.doi.org/10.1021/jf020071cCrossrefGoogle Scholar

  • [27] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26 (1999) 1231–1237. http://dx.doi.org/10.1016/S0891-5849(98)00315-3CrossrefGoogle Scholar

  • [28] Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65 (1983) 55–63. http://dx.doi.org/10.1016/0022-1759(83)90303-4CrossrefGoogle Scholar

  • [29] Geladopoulos T.P., Sotiroudis T.G. and Evangelopoulos A.E. A malachite green colorimetric assay for protein phosphatase activity. Anal. Biochem. 192 (1991) 112–116. http://dx.doi.org/10.1016/0003-2697(91)90194-XCrossrefGoogle Scholar

  • [30] Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J. and Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150 (1985) 76–85. http://dx.doi.org/10.1016/0003-2697(85)90442-7CrossrefGoogle Scholar

  • [31] Brown, C.A., Bolton-Smith, C., Woodward, M. and Tunstall-Pedoe, H. Coffee and tea consumption and the prevalence of coronary heart disease in men and women: results from the Scottish Heart Health Study. J. Epidemiol. Community Health 47 (1993) 171–175. http://dx.doi.org/10.1136/jech.47.3.171CrossrefGoogle Scholar

  • [32] Yochum, L., Kushi, L.H., Meyer, K. and Folsom, A.R. Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. Am. J. Epidemiol. 149 (1999) 943–949. http://dx.doi.org/10.1093/oxfordjournals.aje.a009738CrossrefGoogle Scholar

  • [33] Castaner, O., Covas, M.I., Khymenets, O., Nyyssonen, K., Konstantinidou, V., Zunft, H.F., de la Torre, R., Munoz-Aguayo, D., Vila, J. and Fito, M. Protection of LDL from oxidation by olive oil polyphenols is associated with a downregulation of CD40-ligand expression and its downstream products in vivo in humans. Am. J. Clin. Nutr. 95 (2012) 1238–1244. http://dx.doi.org/10.3945/ajcn.111.029207CrossrefGoogle Scholar

  • [34] Fuentes, E., Fuentes, F. and Palomo, I. Mechanism of the anti-platelet effect of natural bioactive compounds: Role of peroxisome proliferator-activated receptors activation. Platelets (2013) Epub ahead of print. DOI:10.3109/09537104.2013.849334. CrossrefGoogle Scholar

  • [35] Abe, R., Beckett, J., Abe, R., Nixon, A., Rochier, A., Yamashita, N. and Sumpio, B. Olive oil polyphenols differentially inhibit smooth muscle cell proliferation through a G1/S cell cycle block regulated by ERK1/2. Int. J. Angiol. 21 (2012) 69–76. http://dx.doi.org/10.1055/s-0032-1315630Google Scholar

  • [36] Oszmianski, J., Wojdylo, A., Gorzelany, J. and Kapusta, I. Identification and characterization of low molecular weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. J. Agric. Food Chem. 59 (2011) 12830–12835. http://dx.doi.org/10.1021/jf203052jCrossrefGoogle Scholar

  • [37] Venskutonis, P.R., Dvaranauskaite, A. and Labokas, J. Radical scavenging activity and composition of raspberry (Rubus idaeus) leaves from different locations in Lithuania. Fitoterapia 78 (2007) 162–165. http://dx.doi.org/10.1016/j.fitote.2006.10.001CrossrefGoogle Scholar

  • [38] Gudej, J. Kaempferol and quercetin glycosides from Rubus idaeus L. leaves. Acta Pol. Pharm. 60 (2003) 313–315. Google Scholar

  • [39] Gudej, J. and Tomczyk, M. Determination of flavonoids, tannins and ellagic acid in leaves from Rubus L. species. Arch. Pharm. Res. 27 (2004) 1114–1119. http://dx.doi.org/10.1007/BF02975114CrossrefGoogle Scholar

  • [40] Serteser, A., Kargioglu, M., Gok, V., Bagci, Y., Ozcan, M.M. and Arslan, D. Determination of antioxidant effects of some plant species wild growing in Turkey. Int. J. Food. Sci. Nutr. 59 (2008) 643–651. http://dx.doi.org/10.1080/09637480701602530CrossrefGoogle Scholar

  • [41] Kaneider, N.C., Mosheimer, B., Reinisch, N., Patsch, J.R. and Wiedermann, C.J. Inhibition of thrombin-induced signaling by resveratrol and quercetin: effects on adenosine nucleotide metabolism in endothelial cells and plateletneutrophil interactions. Thromb. Res. 114 (2004) 185–194. http://dx.doi.org/10.1016/j.thromres.2004.06.020CrossrefGoogle Scholar

  • [42] Schmatz, R., Mann, T.R., Spanevello, R., Machado, M.M., Zanini, D., Pimentel, V.C., Stefanello, N., Martins, C.C., Cardoso, A.M., Bagatini, M., Gutierres, J., Leal, C.A., Pereira, L.B., Mazzanti, C., Schetinger, M.R. and Morsch, V.M. Moderate red wine and grape juice consumption modulates the hydrolysis of the adenine nucleotides and decreases platelet aggregation in streptozotocin-induced diabetic rats. Cell Biochem. Biophys. 65 (2013) 129–143. http://dx.doi.org/10.1007/s12013-012-9407-5CrossrefGoogle Scholar

  • [43] Ashraf, M., Shah, S.M.A.S, Ahmad, I., Ahmad, S., Arshad, S., Ahmad, K. and Nasim, F.H. Nucleoside triphosphate diphosphohydrolases (NTPDase) inhibitory activity of some medicinal plants. J. Med. Plants Res. 5 (2011) 2090–2094. Google Scholar

  • [44] Lecka, J., Rana, M.S. and Sevigny, J. Inhibition of vascular ectonucleotidase activities by the pro-drugs ticlopidine and clopidogrel favours platelet aggregation. Br. J. Pharmacol. 161 (2010) 1150–1160. http://dx.doi.org/10.1111/j.1476-5381.2010.00951.xCrossrefGoogle Scholar

  • [45] Robson, S.C., Kaczmarek, E., Siegel, J.B., Candinas, D., Koziak, K., Millan, M., Hancock, W.W. and Bach, F.H. Loss of ATP diphosphohydrolase activity with endothelial cell activation. J. Exp. Med. 185 (1997) 153–163. http://dx.doi.org/10.1084/jem.185.1.153CrossrefGoogle Scholar

  • [46] Garcia-Hernandez, M.H., Portales-Cervantes, L., Cortez-Espinosa, N., Vargas-Morales, J.M., Fritche Salazar, J.F., Rivera-Lopez, E., Rodriguez-Rivera, J.G., Quezada-Calvillo, R. and Portales-Perez, D.P. Expression and function of P2X(7) receptor and CD39/Entpd1 in patients with type 2 diabetes and their association with biochemical parameters. Cell Immunol. 269 (2011) 135–143. http://dx.doi.org/10.1016/j.cellimm.2011.03.022CrossrefGoogle Scholar

  • [47] Leeuwenberg, J.F., Smeets, E.F., Neefjes, J.J., Shaffer, M.A., Cinek, T., Jeunhomme, T.M., Ahern, T.J. and Buurman, W.A. E-selectin and intercellular adhesion molecule-1 are released by activated human endothelial cells in vitro. Immunology 77 (1992) 543–549. Google Scholar

  • [48] Grigore, A., Colceru-Mihul, S., Litescu, S., Panteli, M. and Rasit, I. Correlation between polyphenol content and anti-inflammatory activity of Verbascum phlomoides (mullein). Pharm. Biol. 51 (2013) 925–929. http://dx.doi.org/10.3109/13880209.2013.767361CrossrefGoogle Scholar

  • [49] Mochizuki, M., Kajiya, K., Terao, J., Kaji, K., Kumazawa, S., Nakayama, T. and Shimoi, K. Effect of quercetin conjugates on vascular permeability and expression of adhesion molecules. Biofactors 22 (2004) 201–204. http://dx.doi.org/10.1002/biof.5520220142CrossrefGoogle Scholar

  • [50] Kolodziej, H. and Kiderlen, A.F. Antileishmanial activity and immune modulatory effects of tannins and related compounds on Leishmania parasitised RAW 264.7 cells. Phytochemistry 66 (2005) 2056–2071. http://dx.doi.org/10.1016/j.phytochem.2005.01.011Google Scholar

  • [51] Durgo, K., Belscak-Cvitanovic, A., Stancic, A., Franekic, J. and Komes, D. The bioactive potential of red raspberry (Rubus idaeus L.) leaves in exhibiting cytotoxic and cytoprotective activity on human laryngeal carcinoma and colon adenocarcinoma. J. Med. Food. 15 (2012) 258–268. http://dx.doi.org/10.1089/jmf.2011.0087CrossrefGoogle Scholar

  • [52] Hu, J., Zhao, J., Chen, W., Lin, S., Zhang, J. and Hong, Z. Hepatoprotection of 1beta-hydroxyeuscaphic acid - the major constituent from Rubus aleaefolius against CCl4-induced injury in hepatocytes cells. Pharm. Biol. 51 (2013) 686–690. http://dx.doi.org/10.3109/13880209.2012.762406CrossrefGoogle Scholar

  • [53] Zhao, J., Chen, X., Lin, W., Wu, G., Zhuang, Q., Zhong, X., Hong, Z. and Peng, J. Total alkaloids of Rubus aleaefolius Poir inhibit hepatocellular carcinoma growth in vivo and in vitro via activation of mitochondrialdependent apoptosis. Int. J. Oncol. 42 (2013) 971–978. Google Scholar

  • [54] Zheng, Z.X., Zhang, L.J., Huang, C.X., Huang, Q.L., Wei, X.D., Wu, X.Y. and Zhou, W.M. [Antitumour effect of total saponins of Rubus parvifolius on malignant melanoma]. Zhongguo Zhong. Yao Za Zhi. 32 (2007) 2055–058. Google Scholar

About the article

Published Online: 2014-09-12

Published in Print: 2014-09-01

Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, ISSN (Print) 1425-8153, DOI: https://doi.org/10.2478/s11658-014-0202-8.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Boguslawa Luzak, Jacek Golanski, Tomasz Przygodzki, Magdalena Boncler, Dorota Sosnowska, Jan Oszmianski, Cezary Watala, and Marcin Rozalski
Journal of Functional Foods, 2016, Volume 22, Page 257
Dominika Dudzinska, Katarzyna Bednarska, Magdalena Boncler, Boguslawa Luzak, and Cezary Watala
Platelets, 2016, Volume 27, Number 5, Page 433

Comments (0)

Please log in or register to comment.
Log in