Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 19, Issue 3 (Sep 2014)

The potential role of O-GlcNAc modification in cancer epigenetics

Ewa Forma / Paweł Jóźwiak / Magdalena Bryś / Anna Krześlak
Published Online: 2014-09-12 | DOI: https://doi.org/10.2478/s11658-014-0204-6

Abstract

There is no doubt that cancer is not only a genetic disease but that it can also occur due to epigenetic abnormalities. Diet and environmental factors can alter the scope of epigenetic regulation. The results of recent studies suggest that O-GlcNAcylation, which involves the addition of N-acetylglucosamine on the serine or threonine residues of proteins, may play a key role in the regulation of the epigenome in response to the metabolic status of the cell. Two enzymes are responsible for cyclic O-GlcNAcylation: O-GlcNAc transferase (OGT), which catalyzes the addition of the GlcNAc moiety to target proteins; and O-GlcNAcase (OGA), which removes the sugar moiety from proteins. Aberrant expression of O-GlcNAc cycling enzymes, especially OGT, has been found in all studied human cancers. OGT can link the cellular metabolic state and the epigenetic status of cancer cells by interacting with and modifying many epigenetic factors, such as HCF-1, TET, mSin3A, HDAC, and BAP1. A growing body of evidence from animal model systems also suggests an important role for OGT in polycomb-dependent repression of genes activity. Moreover, O-GlcNAcylation may be a part of the histone code: O-GlcNAc residues are found on all core histones.

Keywords: O-GlcNAcylation; Cancer; O-GlcNAc transferase; Histone modifications; Host cell factor 1; Ten-eleven translocation; Polycomb

  • [1] Goldberg, A.D., Allis, C.D. and Bernstein, E. Epigenetics: A landscape takes shape. Cell 128 (2007) 635–638. Google Scholar

  • [2] Ducasse, M. and Brown, M.A. Epigenetic aberrations and cancer. Mol. Cancer 5 (2006) 60. CrossrefGoogle Scholar

  • [3] Sharma, S., Kelly, T.K. and Jones, P.A. Epigenetics in cancer. Carcinogenesis 31 (2010) 27–36. CrossrefGoogle Scholar

  • [4] Ellis, L., Atadja, P.W. and Johnstone, R.W. Epigenetics in cancer: targeting chromatin modifications. Mol. Cancer Ther. 8 (2009) 1409–1420. CrossrefGoogle Scholar

  • [5] Lim, U. and Song, M.A. Dietary and lifestyle factors of DNA methylation. Methods Mol. Biol. 863 (2012) 359–376. Google Scholar

  • [6] Herceg, Z. Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis 22 (2007) 91–103. CrossrefGoogle Scholar

  • [7] Hardy, T.M. and Tollefsbol, T.O. Epigenetic diet: impact on the epigenome and cancer. Epigenomics 3 (2011) 503–518. CrossrefGoogle Scholar

  • [8] Jiménez-Chillarón, J.C., Díaz, R., Martínez, D., Pentinat, T., Ramón-Krauel, M., Ribó, S. and Plösch, T. The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94 (2012) 2242–2263. CrossrefGoogle Scholar

  • [9] Roberts, D.L., Dive, C. and Renehan, A.G. Biological mechanisms linking obesity and cancer risk: new perspectives. Annu. Rev. Med. 61 (2010) 301–316. CrossrefGoogle Scholar

  • [10] Simon, D. and Balkau, B. Diabetes mellitus, hyperglycaemia and cancer. Diabetes Metab. 36 (2010) 182–191. CrossrefGoogle Scholar

  • [11] Bensinger, S.J. and Christofk, H.R. New aspects of the Warburg effect in cancer cell biology. Semin. Cell Dev. Biol. 23 (2012) 352–361. CrossrefGoogle Scholar

  • [12] Dang, C.V. Links between metabolism and cancer. Genes Dev. 26 (2012) 877–890. CrossrefGoogle Scholar

  • [13] Krzeslak, A., Wojcik-Krowiranda, K., Forma, E., Jozwiak, P., Romanowicz, H., Bienkiewicz, A. and Brys, M. Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers. Pathol. Oncol. Res. 18 (2012) 721–728. Google Scholar

  • [14] Jóźwiak, P., Krześlak, A., Pomorski, L. and Lipińska, A. Expression of hypoxia-related glucose transporters GLUT1 and GLUT3 in benign, malignant and non-neoplastic thyroid lesions. Mol. Med. Rep. 6 (2012) 601–606. Google Scholar

  • [15] Jóźwiak, P. and Lipińska, A. The role of glucose transporter 1 (GLUT1) in the diagnosis and therapy of tumors. Post. Hig. Med. Dosw. 66 (2012) 165–174. Google Scholar

  • [16] Szablewski, L. Expression of glucose transporters in cancers. Biochim. Biophys. Acta 1835, (2013) 164–169. Google Scholar

  • [17] Butkinaree, C., Park, K. and Hart, G.W. O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim. Biophys. Acta 1800 (2010) 96–106. Google Scholar

  • [18] Slawson, C., Copeland, R.J. and Hart, G.W. O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem. Sci. 35 (2010) 547–555. CrossrefGoogle Scholar

  • [19] Hanover, J.A., Krause, M.W. and Love, D.C. The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim. Biophys. Acta 1800 (2010) 80–95. Google Scholar

  • [20] Slawson, C. and Hart, G.W. O-GlcNAc signalling: implications for cancer cell biology. Nat. Rev. Cancer 11 (2011) 678–684. CrossrefGoogle Scholar

  • [21] Vocadlo, D.J. O-GlcNAc processing enzymes: catalytic mechanisms, substrate specificity, and enzyme regulation. Curr. Opin. Chem. Biol. 16 (2012) 488–497. CrossrefGoogle Scholar

  • [22] Bullen, J.W., Balsbaugh, J.L., Chanda, D., Shabanowitz, J., Hunt, D.F., Neumann, D. and Hart, G.W. Cross-talk between two essential nutrientsensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J. Biol. Chem. 289 (2014) 10592–606. DOI: 10.1074/jbc.M113. CrossrefGoogle Scholar

  • [23] Xu, Q., Yang, C., Du, Y., Chen, Y., Liu, H., Deng, M., Zhang, H., Zhang, L., Liu, T., Liu, Q., Wang, L., Lou, Z. and Pei, H. AMPK regulates histone H2B O-GlcNAcylation. Nucleic Acids Res. (2014) DOI: 10.1093/nar/gku236. CrossrefGoogle Scholar

  • [24] Hu, P., Shimoji, S. and Hart, G.W. Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. FEBS Lett. 584 (2010) 2526–2538. Google Scholar

  • [25] Özcan, S., Andrali, S.S. and Cantrell, J.E. Modulation of transcription factor function by O-GlcNAc modification. Biochim. Biophys. Acta 1799 (2010) 353–364. Google Scholar

  • [26] Ruan, H.B., Singh, J.P., Li, M.D., Wu, J. and Yang, X. Cracking the O-GlcNAc code in metabolism. Trends Endocrinol. Metab. 24 (2013) 301–309. Google Scholar

  • [27] Hart, G.W., Slawson, C., Ramirez-Correa, G. and Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80 (2011) 825–858. CrossrefGoogle Scholar

  • [28] Onodera, Y., Nam, J.M. and Bissell, M.J. Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways. J. Clin. Invest. (2013) DOI: 10.1172/JCI63146. CrossrefGoogle Scholar

  • [29] Li, Z. and Yi, W. Regulation of cancer metabolism by O-GlcNAcylation. Glycoconj. J. (2013) DOI 10.1007/s10719-013-9515-5. CrossrefGoogle Scholar

  • [30] Mi, W., Gu, Y., Han, C., Liu, H., Fan, Q., Zhang, X., Cong, Q., and Yu, W. O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim. Biophys. Acta 1812 (2011) 514–519. Google Scholar

  • [31] Lynch, T.P., Ferrer, C.M., Jackson, S.R., Shahriari, K.S., Vosseller, K. and Reginato, M.J. Crtical role of O-linked β-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. J. Biol. Chem. 287 (2012) 11070–11081. Google Scholar

  • [32] Caldwell, S.A., Jackson, S.R., Shahriari, K.S., Lynch, T.P., Sethi, G., Walker, S., Vosseller, K. and Reginato, M.J. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene 29 (2010) 2831–2842. CrossrefGoogle Scholar

  • [33] Gu, Y., Mi, W., Ge, Y., Liu, H., Fan, Q., Han, C., Yang, J., Han, F., Lu, X. and Yu, W. GlcNAcylation plays an essential role in breast cancer metastasis. Cancer Res. 70 (2010) 6344–6351. CrossrefGoogle Scholar

  • [34] Yehezkel, G., Cohen, L., Kliger, A., Manor, E. and Khalaila, I. O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) in primary and metastatic colorectal cancer clones and effect of N-acetyl-β-D-glucosaminidase silencing on cell phenotype and transcriptome. J. Biol. Chem. 287 (2012) 28755–28769. Google Scholar

  • [35] Phueaouan, T., Chaiyawat, P., Netsirisawan, P., Chokchaichamnankit, D., Punyarit, P., Srisomsap, C., Svasti, J. and Champattanachai, V. Aberrant O-GlcNAc-modified proteins expressed in primary colorectal cancer. Oncol. Rep. 30 (2013) 2929–2936. Google Scholar

  • [36] Zhu, Q., Zhou, L., Yang, Z., Lai, M., Xie, H., Wu, L., Xing, C., Zhang, F. and Zheng, S. O-GlcNAcylation plays a role in tumor recurrence of hepatocellular carcinoma following liver transplantation. Med. Oncol. 29 (2012) 985–993. CrossrefGoogle Scholar

  • [37] Ma, Z. and Vosseller, K. O-GlcNAc in cancer biology. Amino Acids 45 (2013) 719–733. CrossrefGoogle Scholar

  • [38] Shi, Y., Tomic, J., Wen, F., Shaha, S., Bahlo, A., Harrison, R., Dennis, J.W., Williams, R., Gross, B.J. and Walker, S. Aberrant O-GlcNAcylation characterizes chronic lymphocytic leukemia. Leukemia 24 (2010) 1588–1598. CrossrefGoogle Scholar

  • [39] Krześlak, A., Forma, E., Bernaciak, M., Romanowicz, H. and Bryś, M. Gene expression of O-GlcNAc cycling enzymes in human breast cancers. Clin. Exp. Med. 12 (2012) 61–65. CrossrefGoogle Scholar

  • [40] Krześlak, A., Wójcik-Krowiranda, K., Forma, E., Bieńkiewicz, A., Bryś, M. Expression of genes encoding for enzymes associated with O-GlcNAcylation in endometrial carcinomas: clinicopathologic correlations. Ginekol. Pol. 83 (2012) 22–26. Google Scholar

  • [41] Rozanski, W., Krześlak, A., Forma, E., Bryś, M., Blewniewski, M., Wozniak, P., and Lipinski, M. Prediction of bladder cancer based on urinary content of MGEA5 and OGT mRNA level. Clin. Lab. 58 (2012) 579–583. Google Scholar

  • [42] Champattanachai, V., Netsirisawan, P., Chaiyawat, P., Phueaouan, T., Charoenwattanasatien, R., Chokchaichamnankit, D., Punyarit, P., Srisomsap, C. and Svasti, J. Proteomic analysis and abrogated expression of O-GlcNAcylated proteins associated with primary breast cancer. Proteomics 13 (2013) 2088–2099. CrossrefGoogle Scholar

  • [43] Fardini, Y., Dehennaut, V., Lefebvre, T. and Issad, T. O-GlcNAcylation: a new cancer hallmark? Front. Endocrinol. 4 (2013) 99. Google Scholar

  • [44] Wang, Z., Udeshi, N.D., Slawson, C., Compton, P.D., Sakabe, K., Cheung, W.D., Shabanowitz, J., Hunt, D.F. and Hart, G.W. Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci. Signal. 3 (2010) ra2. DOI: 10.1126/scisignal.2000526. CrossrefGoogle Scholar

  • [45] Krześlak, A., Jóźwiak, P. and Lipińska, A. Down-regulation of β-N-acetyl-D-glucosaminidase increases Akt1 activity in thyroid anaplastic cancer cells. Oncol. Rep. 26 (2011) 743–749. Google Scholar

  • [46] Huang, X., Pan, Q., Sun, D., Chen, W., Shen, A., Huang, M., Ding, J. and Geng, M. O-GlcNAcylation of cofilin promotes breast cancer cell invasion. J. Biol. Chem. 288 (2013) 36418–36425. CrossrefGoogle Scholar

  • [47] Park, S.Y., Kim, H.S., Kim, N.H., Ji, S., Cha, S.Y., Kang, J.G., Ota, I., Shimada, K., Konishi, N. and Nam, H.W. Snail1 is stabilized by O-GlcNAc modification in hyperglycaemic condition. EMBO J. 29 (2010) 3787–3796. CrossrefGoogle Scholar

  • [48] Thiery, J.P., Acloque, H., Huang, R.Y. and Nieto, M.A. Epithelialmesenchymal transitions in development and disease. Cell 139 (2009) 871–890. Google Scholar

  • [49] Zhu, W., Leber, B. and Andrews, D.W. Cytoplasmic O-glycosylation prevents cell surface transport of E-cadherin during apoptosis. EMBO J. 20 (2001) 5999–6007. CrossrefGoogle Scholar

  • [50] Jin, F.Z., Yu, C., Zhao, D.Z., Wu, M.J. and Yang, Z. A correlation between altered O-GlcNAcylation, migration and with changes in E-cadherin levels in ovarian cancer cells. Exp. Cell. Res. 319 (2013) 1482–1490. Google Scholar

  • [51] Kanwal, R. and Gupta, S. Epigenetic modifications in cancer. Clin. Genet. 81 (2012) 303–311. CrossrefGoogle Scholar

  • [52] Hassler, M.R. and Egger, G. Epigenomics of cancer — emerging new concepts. Biochimie 94 (2012) 2219–2230. CrossrefGoogle Scholar

  • [53] Tsai, H.C. and Baylin S.B. Cancer epigenetics: linking basic biology to clinical medicine. Cell Res. 21 (2011) 502–517. CrossrefGoogle Scholar

  • [54] Sakabe, K., Wang, Z. and Hart, G.W. Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc. Natl. Acad. Sci. USA 107 (2010) 19915–19920. CrossrefGoogle Scholar

  • [55] Zhang, S., Roche, K., Nasheuer, H.P. and Lowndes, N.F. Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J. Biol. Chem. 286 (2011) 37483–37495. CrossrefGoogle Scholar

  • [56] Fujiki, R., Hashiba, W., Sekine, H., Yokoyama, A., Chikanishi, T., Ito, S., Imai, Y., Kim, J., He, H.H., Igarashi, K., Kanno, J., Ohtake, F., Kitagawa, H., Roeder, R.G., Brown, M. and Kato, S. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 480 (2011) 557–560. Google Scholar

  • [57] Fong, J.J., Nguyen, B.L., Bridger, R., Medrano, E.E., Wells, L., Pan, S. and Sifers RN. β-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3. J. Biol. Chem. 287 (2012) 12195–12203. CrossrefGoogle Scholar

  • [58] Gao, Z. and Xu, C.W. Glucose metabolism induces mono-ubiquitination of histone H2B in mammalian cells. Biochem. Biophys. Res. Commun. 404 (2011) 428–433. Google Scholar

  • [59] Urasaki, Y., Heath, L. and Xu, C.W. Coupling of glucose deprivation with impaired histone H2B monoubiquitination in tumors. PLoS One 7 (2012) e36775. Google Scholar

  • [60] Shema, E., Tirosh, I., Aylon, Y., Huang, J., Ye, C., Moskovits, N., Raver-Shapira, N., Minsky, N., Pirngruber, J., Tarcic, G., Hublarova, P., Moyal, L., Gana-Weisz, M., Shiloh, Y., Yarden, Y., Johnsen, S.A., Vojtesek, B., Berger, S.L. and Oren M. The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes Dev. 22 (2008) 2664–2676. CrossrefGoogle Scholar

  • [61] Chernikova, S.B., Razorenova, O.V., Higgins, J.P., Sishc, B.J., Nicolau, M., Dorth, J.A., Chernikova, D.A., Kwok, S., Brooks, J.D., Bailey, S.M., Game, J.C. and Brown J.M. Deficiency in mammalian histone H2B ubiquitin ligase Bre1 (Rnf20/Rnf40) leads to replication stress and chromosomal instability. Cancer Res. 72 (2012) 2111–2119. CrossrefGoogle Scholar

  • [62] Chen, Q., Chen, Y., Bian, C., Fujiki, R. and Yu, X. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493 (2013) 561–564. Google Scholar

  • [63] Deplus, R., Delatte, B., Schwinn, M.K., Defrance, M., Méndez, J., Murphy, N., Dawson, M.A., Volkmar, M., Putmans, P., Calonne, E., Shih, A.H., Levine, R.L., Bernard, O., Mercher, T., Solary, E., Urh, M., Daniels, D.L. and Fuks, F. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J. 32 (2013) 645–655. Google Scholar

  • [64] Sakabe, K. and Hart, G.W. O-GlcNAc transferase regulates mitotic chromatin dynamics. J. Biol. Chem. 285 (2010) 34460–34468. Google Scholar

  • [65] Baek, S.H. When signaling kinases meet histones and histone modifiers in the nucleus. Mol. Cell 42 (2011) 274–284. CrossrefGoogle Scholar

  • [66] Nowak, S.J. and Corces, V.G. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20 (2004) 214–220. CrossrefGoogle Scholar

  • [67] Choi, H.S., Choi, B.Y., Cho, Y.Y., Mizuno, H., Kang, B.S., Bode, A.M. and Dong, Z. Phosphorylation of histone H3 at serine 10 is indispensable for neoplastic cell transformation. Cancer Res. 65 (2005) 5818–5827. CrossrefGoogle Scholar

  • [68] Zippo, A., De Robertis, A., Serafini, R. and Oliviero, S. PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat. Cell. Biol. 9 (2007) 932–944. CrossrefGoogle Scholar

  • [69] Chadee, D.N., Hendzel, M.J., Tylipski, C.P., Allis, C.D., Bazett-Jones, D.P., Wright, J.A. and Davie, J.R. Increased Ser-10 phosphorylation of histone H3 in mitogen stimulated and oncogene-transformed mouse fibroblasts. J. Biol. Chem. 274 (1999) 24914–24920. Google Scholar

  • [70] Strelkov, I.S. and Davie, J.R. Ser-10 phosphorylation of histone H3 and immediate early gene expression in oncogene-transformed mouse fibroblasts. Cancer Res. 62 (2002) 75–78. Google Scholar

  • [71] Kim, H.G., Lee, K.W., Cho, Y.Y., Kang, N.J., Oh, S.M., Bode, A.M. and Dong, Z. Mitogen and stress-activated kinase 1-mediated histone H3 phosphorylation is crucial for cell transformation. Cancer Res. 68 (2008) 2538–2547. Google Scholar

  • [72] Tange, S., Ito, S., Senga, T. and Hamaguchi, M. Phosphorylation of histone H3 at Ser10: its role in cell transformation by v-Src. Biochem. Biophys. Res. Commun. 386 (2009) 588–592. Google Scholar

  • [73] Portella, G., Passaro, C. and Chieffi, P. Aurora B: a new prognostic marker and therapeutic target in cancer. Curr. Med. Chem. 18 (2011) 482–496. CrossrefGoogle Scholar

  • [74] Murnion, M.E., Adams, R.R., Callister, D.M., Allis, C.D., Earnshaw, W.C. and Swedlow, J.R. Chromatin-associated protein phosphatase 1 regulates aurora-B and histone H3 phosphorylation. J. Biol. Chem. 276 (2001) 26656–26665. Google Scholar

  • [75] Wells, L., Kreppel, L.K., Comer, F.I., Wadzinski, B.E. and Hart, G.W. O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits. J. Biol. Chem. 279 (2004) 38466–38470. Google Scholar

  • [76] Slawson, C., Lakshmanan, T., Knapp, S., Hart, G.W. A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. Mol. Biol. Cell 19 (2008) 4130–4140. CrossrefGoogle Scholar

  • [77] Tan, E.P., Caro, S., Potnis, A., Lanza, C. and Slawson, C. O-linked N-acetylglucosamine cycling regulates mitotic spindle organization. J. Biol. Chem. 288 (2013) 27085–27099. CrossrefGoogle Scholar

  • [78] Capotosti, F., Guernier, S., Lammers, F., Waridel, P., Cai, Y., Jin, J., Conaway, J.W., Conaway, R.C. and Herr, W. O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell 144 (2011) 376–388. Google Scholar

  • [79] Hanover, JA. A versatile sugar transferase makes the cut. Cell 144 (2011) 321–322. Google Scholar

  • [80] Coller, H.A. Is cancer a metabolic disease? Am. J. Pathol. 184 (2014) 4–17. Google Scholar

  • [81] Ruan, H.B., Han, X., Li, M.D., Singh, J.P., Qian, K., Azarhoush, S., Zhao, L., Bennett, A.M., Samuel, V.T., Wu, J., Yates, J.R. 3rd and Yang, X. O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1α stability. Cell Metab. 16 (2012) 226–237. DOI: 10.1016/j.cmet.2012.07.006. CrossrefGoogle Scholar

  • [82] Zargar, Z.U. and Tyagi, S. Role of host cell factor-1 in cell cycle regulation. Transcription 34 (2012) 187–192. Google Scholar

  • [83] Glinsky, G.V., Berezovska, O. and Glinskii, A.B. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J. Clin. Invest. 115 (2005) 1503–1521. CrossrefGoogle Scholar

  • [84] Julien, E. and Herr, W. Proteolytic processing is necessary to separate an ensure proper cell growth and cytokinesis functions of HCF-1. EMBO J. 22 (2003) 2360–2369. CrossrefGoogle Scholar

  • [85] Julien, E. and Herr, W. A switch in mitotic histone H4 lysine 20 methylation status is linked to M phase defects upon loss of HCF1. Mol. Cell 14 (2004) 713–725. Google Scholar

  • [86] Tyagi, S. and Herr, W. E2F mediates DNA damage and apoptosis through HCF-1 and the MLL family of histone methyltransferase. EMBO J. 28 (2009) 3185–3195. CrossrefGoogle Scholar

  • [87] Wysocka, J., Myers, M.P., Laherty, C.D., Eisenman, R.N. and Herr, W. Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev. 17 (2003) 896–911. Google Scholar

  • [88] Mazars, R., Gonzalez-de-Peredo, A., Cayrol, C., Lavigne, A.C., Vogel, J.L., Ortega, N., Lacroix, C., Gautier, V., Huet, G., Ray, A., Monsarrat, B., Kristie, T.M. and Girard, J.P. The THAP-zinc finger protein THAP1 associates with coactivator HCF-1 and O-GlcNAc transferase: a link between DYT6 and DYT3 dystonias. J. Biol. Chem. 285 (2010) 13364–13371. Google Scholar

  • [89] Daou, S., Mashtalir, N., Hammond-Martel, I., Pak, H., Yu, H., Sui, G., Vogel, J.L., Kristie, T.M. and Affar el, B. Crosstalk between OGlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway. Proc. Natl. Acad. Sci. USA 108 (2011) 2747–2752. Google Scholar

  • [90] Lazarus, M.B., Jiang, J., Kapuria, V., Bhuiyan, T., Janetzko, J., Zandberg, W.F., Vocadlo, D.J., Herr, W. and Walker, S. HCF-1 is cleaved in the active site of O-GlcNAc transferase. Science 342 (2013) 1235–1239. Google Scholar

  • [91] Reilly, P.T., Wysocka, J. and Herr, W. Inactivation of the retinoblastoma protein family can bypass the HCF-1 defect in tsBN67 cell proliferation and cytokinesis. Mol. Cell. Biol. 22 (2002) 6767–6778. CrossrefGoogle Scholar

  • [92] Wells, L., Slawson, C. and Hart, G.W. The E2F-1 associated retinoblastomasusceptibility gene product is modified by O-GlcNAc. Amino Acids 40 (2011) 877–883. Google Scholar

  • [93] Murali, R., Wiesner, T. and Scolyer, R.A. Tumors associated with BAP1 mutations. Pathology 45 (2013) 116–126. CrossrefGoogle Scholar

  • [94] Dey, A., Seshasayee, D., Noubade, R., French, D.M., Liu, J., Chaurushiya, M.S., Kirkpatrick, D.S., Pham, V.C., Lill, J.R., Bakalarski, C.E., Wu, J., Phu, L., Katavolos, P., LaFave, L.M., Abdel-Wahab, O., Modrusan, Z., Seshagiri, S., Dong, K,. Lin, Z., Balazs, M., Suriben, R., Newton, K., Hymowitz, S., Garcia-Manero, G., Martin, F., Levine, R.L. and Dixit V. M. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 337 (2012) 1541–1546. Google Scholar

  • [95] Yang, X., Zhang, F. and Kudlow, J.E. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 110 (2002) 69–80. Google Scholar

  • [96] Cayrol, C., Lacroix, C., Mathe, C., Ecochard, V., Ceribelli, M., Loreau, E., Lazar, V., Dessen, P., Mantovani, R., Aguilar, L. and Girard, J.P. The THAP-zinc finger protein THAP1 regulates endothelial cell proliferation through modulation of pRB/E2F cell-cycle target genes. Blood 109 (2007) 584–594. Google Scholar

  • [97] Macfarlan, T., Kutney, S., Altman, B., Montross, R., Yu, J., Chakravarti, D. and Girard, J.P. Human THAP7 is a chromatin-associated, histone tailbinding protein that represses transcription via recruitment of HDAC3 and nuclear hormone receptor corepressor. J. Biol. Chem. 280 (2005) 7346–7358. CrossrefGoogle Scholar

  • [98] Roussigne, M., Cayrol, C., Clouaire, T., Amalric, F. and Girard, J.P. THAP1 is a nuclear proapoptotic factor that links prostate-apoptosis-response-4 (Par-4) to PML nuclear bodies. Oncogene 22 (2003) 2432–2442. Google Scholar

  • [99] Zhu, C.Y., Li, C.Y., Li, Y., Zhan, Y.Q., Li, Y.H., Xu, C.W., Xu, W.X., Sun, H.B. and Yang, X.M. Cell growth suppression by thanatos-associated protein 11 (THAP11) is mediated by transcriptional downregulation of c-Myc. Cell Death Differ. 16 (2009) 395–405. Google Scholar

  • [100] Dejosez, M., Krumenacker, J.S., Zitur, L.J., Passeri, M., Chu, L.F., Songyang, Z., Thomson, J.A. and Zwaka, T.P. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell 133 (2008) 1162–1174. Google Scholar

  • [101] Parker, J.B., Palchaudhuri, S., Yin, H., Wei, J. and Chakravarti, D.A. Transcriptional regulatory role of the THAP11-HCF-1 complex in colon cancer cell function. Mol. Cell. Biol. 32 (2012) 1654–1670. Google Scholar

  • [102] Ito, S., D’Alessio, A.C., Taranova, O.V., Hong, K., Sowers, L.C. and Zhang, Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466 (2010) 1129–1133. Google Scholar

  • [103] Tahiliani, M., Koh, K.P., Shen, Y., Pastor, W.A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L.M., Liu, D.R., Aravind, L. and Rao, A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324 (2009) 930–935. Google Scholar

  • [104] Kriaucionis, S. and Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324 (2009) 929–930. Google Scholar

  • [105] Pfeifer, G.P., Kadam, S. and Jin, S.G. 5-hydroxymethylcytosine and its potential roles in development and cancer. Epigenetics Chromatin. 6 (2013) 10. CrossrefGoogle Scholar

  • [106] Lorsbach, R.B., Moore, J., Mathew, S., Raimondi, S.C., Mukatira, S.T. and Downing, J.R. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17 (2003) 637–641. Google Scholar

  • [107] Delatte, B. and Fuks, F. TET proteins: on the frenetic hunt for new cytosine modifications. Brief Funct. Genomics 12 (2013) 191–204. Google Scholar

  • [108] Tan, L. and Shi, Y.G. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139 (2012) 1895–1902. Google Scholar

  • [109] Jin, S.G, Jiang, Y., Qiu, R., Rauch, T.A., Wang, Y., Schackert, G., Krex, D., Lu, Q. and Pfeifer, G.P. 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutation. Cancer Res. 71 (2011) 7360–7365. CrossrefGoogle Scholar

  • [110] Haffner, M.C., Chaux, A., Meeker, A.K., Esopi, D.M., Gerber, J., Pellakuru, L.G., Toubaji, A., Argani, P., Iacobuzio-Donahue, C., Nelson, W.G., Netto, G.J., De Marzo, A.M. and Yegnasubramanian, S. Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget 6 (2011) 627–637. Google Scholar

  • [111] Yang, H., Liu, Y., Bai, F., Zhang, J.Y., Ma, S.H., Liu, J., Xu, Z.D., Zhu, H.G., Ling, Z.Q., Ye, D., Guan, K.L. and Xiong, Y. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 6 (2013) 663–669. Google Scholar

  • [112] Kraus, T.F., Globisch, D., Wagner, M., Eigenbrod, S., Widmann, D., Munzel, M., Muller, M., Pfaffeneder, T., Hackner, B., Feiden, W., Schüller, U., Carell, T. and Kretzschmar, H.A. Low values of 5-hydroxymethylcytosine (5hmC), the “sixth base”, are associated with anaplasia in human brain tumors. Int. J. Cancer 6 (2012) 1577–1590. Google Scholar

  • [113] Kudo, Y., Tateishi, K., Yamamoto, K., Yamamoto, S., Asaoka, Y., Ijichi, H., Nagae, G., Yoshida, H., Aburatani, H. and Koike, K. Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation. Cancer Sci. 6 (2012) 670–676. Google Scholar

  • [114] Lian, C.G., Xu, Y., Ceol, C., Wu, F., Larson, A., Dresser, K., Xu, W., Tan, L., Hu, Y., Zhan, Q., Lee, C.W., Hu, D., Lian, B.Q., Kleffel, S., Yang, Y., Neiswender, J., Khorasani, A.J., Fang, R., Lezcano, C., Duncan, L.M., Scolyer, R.A., Thompson, J.F., Kakavand, H., Houvras, Y., Zon, L.I., Mihm, M.C. Jr, Kaiser, U.B., Schatton, T., Woda, B.A., Murphy, G.F., Shi, Y.G. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 6 (2012) 1135–1146. Google Scholar

  • [115] Ito, R., Katsura, S., Shimada, H., Tsuchiya, H., Hada, M., Okumura, T., Sugawara, A. and Yokoyama, A. TET3-OGT interaction increases the stability and the presence of OGT in chromatin. Genes Cells 19 (2014) 52–65. CrossrefGoogle Scholar

  • [116] Wu, H., D’Alessio, A.C., Ito, S., Xia, K., Wang, Z., Cui, K., Zhao, K., Sun, Y.E. and Zhang, Y. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473 (2011) 389–393. Google Scholar

  • [117] Williams, K., Christensen, J., Pedersen, M.T., Johansen, J.V., Cloos, P.A., Rappsilber, J. and Helin, K. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473 (2011) 343–348. CrossrefGoogle Scholar

  • [118] Shi, F.T., Kim, H., Lu, W., He, Q., Liu, D., Goodell, M.A., Wan, M. and Songyang, Z. Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells. J. Biol. Chem. 288 (2013) 20776–20784. Google Scholar

  • [119] Yang, Q., Wu, K., Ji, M., Jin, W., He, N., Shi, B. and Hou, P. Decreased 5-hydroxymethylcytosine (5-hmC) is an independent poor prognostic factor in gastric cancer patients. J. Biomed. Nanotechnol. 9 (2013) 1607–1616. CrossrefGoogle Scholar

  • [120] Fu, H.L., Ma, Y., Lu, L.G., Hou, P., Li, B.J., Jin, W.L. and Cui, D.X. TET1 exerts its tumor suppressor function by interacting with p53-EZH2 pathway in gastric cancer J. Biomed. Nanotechnol. 10 (2014) 1217–1230. CrossrefGoogle Scholar

  • [121] Hsu, C.H., Peng, K.L., Kang, M.L., Chen, Y.R., Yang, Y.C., Tsai, C.H., Chu, C.S., Jeng, Y.M., Chen, Y.T., Lin, F.M., Huang, H.D., Lu, Y.Y., Teng, Y.C., Lin, S.T., Lin, R.K., Tang, F.M., Lee, S.B., Hsu, H.M., Yu, J.C., Hsiao, P.W. and Juan, L.J. TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep. 2 (2012) 568–579. DOI: 10.1016/j.celrep.2012.08.030. CrossrefGoogle Scholar

  • [122] Gambetta, M.C., Oktaba, K. and Müller, J. Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science 325 (2009) 93–96. Google Scholar

  • [123] Sinclair, D.A., Syrzycka, M., Macauley, M.S., Rastgardani, T., Komljenovic, I., Vocadlo, D.J., Brock, H.W. and Honda, B.M. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc. Natl. Acad. Sci. USA 106 (2009) 13427–13432. CrossrefGoogle Scholar

  • [124] Love, D.C., Krause, M.W. and Hanover, J.A. O-GlcNAc cycling: emerging roles in development and epigenetics. Semin. Cell. Dev. Biol. 21 (2010) 646–654. CrossrefGoogle Scholar

  • [125] Hanover, J.A., Krause, M.W. and Love, D.C. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat. Rev. Mol. Cell. Biol. 13 (2012) 312–321. CrossrefGoogle Scholar

  • [126] Leeb, M. and Wutz, A. Establishment of epigenetic patterns in development. Chromosoma 121 (2012) 251–262. CrossrefGoogle Scholar

  • [127] Richly, H., Aloia, L. and Di Croce, L. Roles of the Polycomb group proteins in stem cells and cancer. Cell. Death Dis. 2 (2011) e204. CrossrefGoogle Scholar

  • [128] Morey, L. and Helin, K. Polycomb group protein-mediated repression of transcription. Trends Biochem. Sci. 35 (2010) 323–332. CrossrefGoogle Scholar

  • [129] Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. and Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16 (2002) 2893–2905. CrossrefGoogle Scholar

  • [130] Francis, N.J., Kingston, R.E. and Woodcock, C.L. Chromatin compaction by a polycomb group protein complex. Science 306 (2004) 1574–1577. Google Scholar

  • [131] Tsang, D.P. and Cheng, A.S. Epigenetic regulation of signaling pathways in cancer: role of the histone methyltransferase EZH2. J. Gastroenterol. Hepatol. 26 (2011) 19–27. CrossrefGoogle Scholar

  • [132] Myers, S.A., Panning, B. and Burlingame, A.L. Polycomb repressive complex 2 is necessary for the normal site-specific O-GlcNAc distribution in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 108 (2011) 9490–9495. CrossrefGoogle Scholar

  • [133] Chu, C.S., Lo, P.W., Yeh, Y.H., Hsu, P.H., Peng, S.H., Teng, Y.C., Kang, M.L., Wong, C.H. and Juan, L.J. O-GlcNAcylation regulates EZH2 protein stability and function. Proc. Natl. Acad. Sci. USA. 111 (2014) 1355–1360. DOI: 10.1073/pnas.1323226111. CrossrefGoogle Scholar

About the article

Published Online: 2014-09-12

Published in Print: 2014-09-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, ISSN (Print) 1425-8153, DOI: https://doi.org/10.2478/s11658-014-0204-6.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Seungtae Moon, Yong-Kyu Lee, Sang-Wang Lee, and Soo-Jong Um
Biochemical and Biophysical Research Communications, 2017
[2]
Ami Wang, Anjali Papneja, Martin Hyrcza, Ayman Al-Habeeb, and Danny Ghazarian
Journal of Clinical Pathology, 2016, Volume 69, Number 9, Page 750
[3]
Adam R. Wende
PROTEOMICS - Clinical Applications, 2016, Volume 10, Number 1, Page 25
[4]
Jessica Gagnon, Salima Daou, Natalia Zamorano, Nicholas VG Iannantuono, Ian Hammond-Martel, Nazar Mashtalir, Eric Bonneil, Hugo Wurtele, Pierre Thibault, and El Bachir Affar
Epigenetics, 2015, Volume 10, Number 8, Page 677
[5]
Tao Sun, Anya Plutynski, Stacey Ward, and Joshua B. Rubin
Cellular and Molecular Life Sciences, 2015, Volume 72, Number 17, Page 3323
[6]
Maria Cristina Gambetta and Jürg Müller
Chromosoma, 2015, Volume 124, Number 4, Page 429
[7]
Kendra K. Nordgren and Andrew J. Skildum
European Journal of Clinical Investigation, 2015, Volume 45, Page 9

Comments (0)

Please log in or register to comment.
Log in