Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 19, Issue 3

The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach

Parveen Salahuddin / Gulam Rabbani / Rizwan Khan
Published Online: 2014-09-12 | DOI: https://doi.org/10.2478/s11658-014-0205-5


Protein glycation is initiated by a nucleophilic addition reaction between the free amino group from a protein, lipid or nucleic acid and the carbonyl group of a reducing sugar. This reaction forms a reversible Schiff base, which rearranges over a period of days to produce ketoamine or Amadori products. The Amadori products undergo dehydration and rearrangements and develop a cross-link between adjacent proteins, giving rise to protein aggregation or advanced glycation end products (AGEs). A number of studies have shown that glycation induces the formation of the β-sheet structure in β-amyloid protein, α-synuclein, transthyretin (TTR), copper-zinc superoxide dismutase 1 (Cu, Zn-SOD-1), and prion protein. Aggregation of the β-sheet structure in each case creates fibrillar structures, respectively causing Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, familial amyloid polyneuropathy, and prion disease. It has been suggested that oligomeric species of glycated α-synuclein and prion are more toxic than fibrils. This review focuses on the pathway of AGE formation, the synthesis of different types of AGE, and the molecular mechanisms by which glycation causes various types of neurodegenerative disease. It discusses several new therapeutic approaches that have been applied to treat these devastating disorders, including the use of various synthetic and naturally occurring inhibitors. Modulation of the AGE-RAGE axis is now considered promising in the prevention of neurodegenerative diseases. Additionally, the review covers several defense enzymes and proteins in the human body that are important anti-glycating systems acting to prevent the development of neurodegenerative diseases.

Keywords: Aggregation; Advanced glycation end products; Glycation in Alzheimer’s disease; Glycation in Parkinson’s disease; Glycation in amyotrophic lateral sclerosis; Glycation in familial amyloid polyneuropathy; Glycation in prion diseases; Glyoxylases; AGE inhibitors

  • [1] Forbes, J.M., Cooper, M.E., Oldfield, M.D. and Thomas, M.C. Role of advanced glycation end products in diabetic nephropathy. J. Am. Soc. Nephrol. 14 (2003) 254–258. CrossrefGoogle Scholar

  • [2] Ahmed, N. Advanced glycation end products-role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 67 (2005) 3–21. CrossrefGoogle Scholar

  • [3] Ulrich, P. and Cerami, A. Protein glycation, diabetes and aging. Recent Prog. Horm. Res. 56 (2001) 1–21. Google Scholar

  • [4] Baynes, J.W. and Thorpe, S.R. Role of oxidative stress in diabetic complications. a new perspective on an old paradigm. Diabetes 48 (1999) 19. Google Scholar

  • [5] Chellan, P. and Nagaraj, R.H. Early glycation products produce pentosidine cross-links on native proteins. Novel mechanism of pentosidine formation and propagation of glycation. J. Biol. Chem. 276 (2001) 3895–903. Google Scholar

  • [6] Stitt, A., Gardiner, T.A., Alderson, N.L., Canning, P., Frizzell, N., Duff, N., Boyle, C., Januszewski, A.S., Chachich, M., Baynes, J.W. and Thorpe, S.R. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51 (2002) 2826–2832. CrossrefGoogle Scholar

  • [7] Thornalley, P.J. and Minhas, H.S. Rapid hydrolysis and slow alpha, betadicarbonyl cleavage of an agent proposed to cleave glucose-derived protein cross-links. Biochem. Pharmacol. 57 (1999) 303–307. CrossrefGoogle Scholar

  • [8] Horie, K., Miyata, T., Yasuda, T., Takeda, A., Yasuda, Y., Maeda, K., Sobue, G. and Kurokawa, K. Immunohistochemical localization of advanced glycation end products, pentosidine, and carboxymethyllysine in lipofuscin pigments of Alzheimer’s disease and aged neurons. Biochem. Biophys. Res. Commun. 236 (1997) 327–330. Google Scholar

  • [9] Takeda, A., Yasuda, T., Miyata, T., Goto, Y., Wakai, M., Watanabe, M., Yasuda, Y., Horie, K. Inagaki, T., Doyu, M., Maeda, K. and Sobue, G. Advanced glycation end products colocalized with astrocytes and microglial cells in Alzheimer’s disease brain. Acta Neuropathol. 95 (1998) 555–558. CrossrefGoogle Scholar

  • [10] Castellani, R.J., Harris, P.L., Sayre, L.M., Fujii, J., Taniguchi, N., Vitek, M.P., Founds, H., Atwood, C.S., Perry, G. and Smith, M.A. Active glycation in neurofibrillary pathology of Alzheimer’s disease: N (epsilon)-(Carboxymethyl) lysine and hexitol-lysine. Free Radic. Biol. Med. 31 (2001) 175–180. Google Scholar

  • [11] Obayashi, H., Nakano, K., Shigeta, H., Yamaguchi, M., Yoshimori, K., Fukui, M., Fujii, M., Kitagawa, Y., Nakamura, N., Nakamura, K., Nakazawa, Y., Ienaga, K., Ohta, M., Nishimura, M., Fukui, I. and Kondo, M. Formation of crossline as a fluorescent advanced glycation end product in vitro and in vivo. Biochem. Biophys. Res. Commun. 226 (1996) 37–41. CrossrefGoogle Scholar

  • [12] Reddy, S., Bichler, J., Wells-Knecht, J., Thorpe, S.R. and Baynes, J.W. N epsilon-(carboxymethyl) lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 34 (1995) 10872–10878. CrossrefGoogle Scholar

  • [13] Frye, E.B., Degenhardt, T.P., Thorpe, S.R. and Baynes, J.W. Role of the Maillard reaction in aging of tissue proteins. J. Biol. Chem. 273 (1998) 18714–18719. Google Scholar

  • [14] Miyata, T., Ueda, Y., Yamada, Y., Izuhara, Y., Wada, T., Jadoul, M., Saito, A., Kurokawa, K. and van Ypersele de Strihou, C. Accumulation of carbonyls accelerates the formation of pentosidine, an advanced glycation end product: carbonyl stress in uremia. J. Am. Soc. Nephrol. 9 (1998) 2349–2356. Google Scholar

  • [15] Miyata, T., van Ypersele de Strihou, C., Kurokawa, K. and Baynes, J.W. Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long term uremic complications. Kidney Int. 55 (1999) 389–399. CrossrefGoogle Scholar

  • [16] Kaneko, M., Bucciarelli, L., Hwang, Y.C., Lee, L., Yan, S.F., Schmidt, A.M. and Ramasamy, R. Aldose reductase and AGE-RAGE pathways: key players in myocardial ischemic injury. Ann. N. Y. Acad. Sci. 1043 (2005) 702–709. Google Scholar

  • [17] Vlassara, H. and Palace, M.R. Diabetes and advanced glycation end products. J. Intern. Med. 251 (2002) 87–101. Google Scholar

  • [18] Rabbani, G., Ahmad, E., Zaidi, N. and Khan, R.H. pH-dependent conformational transitions in conalbumin (ovotransferrin), a metalloproteinase from hen egg white. Cell Biochem. Biophys. 61 (2011) 551–560. CrossrefGoogle Scholar

  • [19] Rabbani, G., Ahmad, E., Zaidi, N., Fatima, S. and Khan, R.H. pH induced molten globule state of Rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochem. Biophys. 62 (2012) 487–499. CrossrefGoogle Scholar

  • [20] Rabbani, G., Kaur, J., Ahmad, E., Khan, R.H. and Jain, S.K. Structural characteristics of thermostable immunogenic outer membrane protein from Salmonella enterica serovar Typhi (S. Typhi). Appl. Microbiol. Biotechnol. 98 (2014) 2533–2543. CrossrefGoogle Scholar

  • [21] Neeper, M., Schmidt, A.M., Brett, J., Yan, S.D., Wang, F., Pan, Y.C., Elliston, K., Stern, D. and Shaw, A. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem. 267 (1992) 14998–15004. Google Scholar

  • [22] el Khoury, J., Thomas, C.A., Loike, J.D., Hickman, S.E., Cao, L. and Silverstein, S.C. Macrophages adhere to glucose-modified basement membrane collagen IV via their scavenger receptors. J. Biol. Chem. 269 (1994) 10197–10200. Google Scholar

  • [23] Vlassara, H., Li, Y.M., Imani, F., Wojciechowicz, D., Yang, Z., Liu, F.T. and Cerami, A. Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): a new member of the AGEreceptor complex. Mol. Med. 1 (1995) 634–646. Google Scholar

  • [24] Li, Y.M., Mitsuhashi, T., Wojciechowicz, D., Shimizu, N., Li, J., Stitt, A., He, C. Banerjee, D. and Vlassara, H. Molecular identity and cellular distribution of advanced glycation end product receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins. Proc. Natl. Acad. Sci. USA 93 (1996) 11047–11052. CrossrefGoogle Scholar

  • [25] Ohgami, N., Nagai, R., Ikemoto, M., Arai, H., Miyazaki, A., Hakamata, H., Horiuchi, S. and Nakayama, H. CD36 serves as a receptor for advanced glycation end products (AGE). J. Diabet. Complicat. 16 (2002) 56–59. CrossrefGoogle Scholar

  • [26] Schmidt, A.M., Yan, S.D., Yan, S.F. and Stern, D.M. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J. Clin. Invest. 108 (2001) 949–955. CrossrefGoogle Scholar

  • [27] Chen, X., Walker, D.G., Schmidt, A.M., Arancio, O., Lue, L.F. and Yan, S.D. RAGE: a potential target for Aβ-mediated cellular perturbation in Alzheimer’s disease. Curr. Mol. Med. 7 (2007) 735–742. Google Scholar

  • [28] Grossman, H., Bergmann, C. and Parker, S. Dementia: a brief review. Mt. Sinai J. Med. 73 (2006) 985–992. Google Scholar

  • [29] Campion, D., Dumanchin, C., Hannequin, D., Dubois, B., Belliard, S., Puel, M., Thomas-Anterion, C., Michon, A., Martin, C., Charbonnier, F., Raux, G., Camuzat, A., Penet, C., Mesnage, V., Martinez, M., Clerget-Darpoux, F., Brice, A. and Frebourg, T. Early-onset autosomal dominant Alzheimer’s disease: prevalence, genetic heterogeneity, and mutation spectrum. Am. J. Hum. Genet. 65 (1999) 664–670. CrossrefGoogle Scholar

  • [30] Rademakers, R. and Rovelet-Lecrux, A. Recent insights into the molecular genetics of dementia. Trends Neurosci. 32 (2009) 45–46. Google Scholar

  • [31] Obrenovich, M.E. and Monnier, V.M. Glycation stimulates amyloid formation. Sci. Aging Knowledge Environ. 2 (2004) pe3. Google Scholar

  • [32] Munch, G., Schicktanz, D., Behme, A., Gerlach, M., Riederer, P., Palm, D. and Schinzel, R. Amino acid specificity of glycation and protein-AGE crosslinking reactivities determined with a dipeptide SPOT library. Nat. Biotechnol. 17 (1999) 1006–1010. CrossrefGoogle Scholar

  • [33] Wong, A., Luth, H.J., Deuther-Conrad, W., Dukic-Stefanovic, S., Gasic-Milenkovic, J., Arendt, T. and Munch, G. Advanced glycation end products co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res. 920 (2001) 32–40. Google Scholar

  • [34] Reddy, V.P., Obrenovich, M.E., Atwood, C.S., Perry, G. and Smith, M.A. Involvement of Maillard reactions in Alzheimer’s disease. Neurotox. Res. 4 (2002) 191–209. CrossrefGoogle Scholar

  • [35] Vitek, M.P., Bhattacharya, K., Glendening, J.M., Stopa, E., Vlassara, H., Bucala, R., Manogue, K. and Cerami, A. Advanced glycation end products contribute to amyloidosis in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 91 (1994) 4766–4770. CrossrefGoogle Scholar

  • [36] Smith, M.A., Taneda, S., Richey, P.L., Miyata, S., Yan, S.D., Stern, D., Sayre, L.M., Monnier, V.M. and Perry, G. Advanced Maillard reaction end products are associated with Alzheimer’s disease pathology. Proc. Natl. Acad. Sci. USA 91 (1994) 5710–5714. CrossrefGoogle Scholar

  • [37] Mattson, M.P., Carney, J.W. and Butterfield, D.A. A tombstone in Alzheimer’s? Nature 373 (1995) 481. CrossrefGoogle Scholar

  • [38] Smith, M.A., Sayre, L.M., Vitek, M.P., Monnier, V.M. and Perry, G. Early AGEing and Alzheimer’s. Nature 374 (1995) 316. CrossrefGoogle Scholar

  • [39] Li, J.J., Dickson, D., Hof, P.R. and Vlassara, H. Receptors for advanced glycosylation end products in human brain: role in brain homeostasis. Mol. Med. 4 (1998) 46–60. Google Scholar

  • [40] Sasaki, N., Toki, S., Chowei, H., Saito, T., Nakano, N., Hayashi, Y., Takeuchi, M. and Makita, Z. Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease. Brain Res. 888 (2001) 256–262. Google Scholar

  • [41] Coker L.H. and Wagenknecht, L.E. Advanced glycation end products, diabetes, and the brain. Neurology 77 (2011) 1326–1327. CrossrefGoogle Scholar

  • [42] Munch, G., Mayer, S., Michaelis, J., Hipkiss, A.R., Riederer, P., Muller, R., Neumann, A., Schinzel, R. and Cunningham, A.M. Influence of advanced glycation end products and AGE-inhibitors on nucleation-dependent polymerization of beta-amyloid peptide. Biochim. Biophys. Acta 1360 (1997) 17–29. Google Scholar

  • [43] Li, X.H., Du, L.L., Cheng, X.S., Jiang, X., Zhang, Y., Lv, B.L., Liu, R., Wang, J.Z. and Zhou, X.W. Glycation exacerbates the neuronal toxicity of β-amyloid. Cell Death Dis. 4 (2013) e673. Google Scholar

  • [44] Ko, S.Y., Lin, Y.P., Lin, Y.S. and Chang, S.S. Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species. Free Radic. Biol. Med. 49 (2010) 474–480. Google Scholar

  • [45] Ledesma, M.D., Bonay, P. and Avila, J. Tau protein from Alzheimer’s disease patients is glycated at its tubulin-binding domain. J. Neurochem. 65 (1995) 1658–1664. Google Scholar

  • [46] Li, X. H., Lv, B. L., Xie, J. Z., Liu, J. X., Zhou, W. and Wang, J. Z. AGEs induce Alzheimer-like tau pathology and memory deficit via RAGEmediated GSK-3 activation. Neurobiol. Aging 33 (2012) 400–410. Google Scholar

  • [47] Chen, K., Maley, J. and Yu, P.H. Potential implications of endogenous aldehydes in β-amyloid misfolding oligomerization and fibrillogenesis. J. Neurochem. 99 (2006) 1413–1424. CrossrefGoogle Scholar

  • [48] Jack, M.M., Ryals, J.M. and Wright, D.E. Protection from diabetes-induced peripheral sensory neuropathy — A role for elevated glyoxalase I? Exp. Neurol. 234 (2012) 62–69. Google Scholar

  • [49] Kuhla, B., Boeck, K., Schmidt, A., Ogunladem, V., Arendt, T., Munch, G. and Luth, H.J. Age-and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer’s disease brains. Neurobiol. Aging 28 (2007) 29–41. CrossrefGoogle Scholar

  • [50] Butterfield, D.A., Hardas, S.S. and Lange, M.L. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’s disease: many pathways to neurodegeneration. J. Alzheimers Dis. 20 (2010) 369–393. Google Scholar

  • [51] Sato, T., Shimogaito, N., Wu, X., Kikuchi, S., Yamagishi, S. and Takeuchi, M. Toxic advanced glycation end products (TAGE) theory in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 21 (2006) 197–208. CrossrefGoogle Scholar

  • [52] Takeuchi, M., Kikuchi, S., Sasaki, N., Suzuki, T., Watai, T., Iwaki, M., Bucala, R. and Yamagishi, S. Involvement of advanced glycation endproducts (AGEs) in Alzheimer’s disease. Curr. Alzheimer Res. 1 (2004) 39–46. CrossrefGoogle Scholar

  • [53] Guerrero, E., Vasudevaraju, P., Hegde, M.L., Britton, G. B. and Rao, K.S. Recent advances in α-synuclein functions, advanced glycation, and toxicity: implications for Parkinson’s disease. Mol. Neurobiol. 47 (2013) 525–536. CrossrefGoogle Scholar

  • [54] Defebvre, L. Parkinson’s disease: role of genetic and environment factors. Involvement in everyday clinical practice. Rev. Neurol (Paris) 166 (2010) 764–769. CrossrefGoogle Scholar

  • [55] Nuytemans, K., Theuns, J., Cruts, M. and Van Broeckhoven, C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum. Mutat. 31 (2010) 763–780. Google Scholar

  • [56] Martin, I., Dawson, V.L. and Dawson, T.M. The impact of genetic research on our understanding of Parkinson’s disease. Prog. Brain. Res. 183 (2010) 21–41. Google Scholar

  • [57] Martin, I., Dawson, V.L. and Dawson, T.M. Recent advances in the genetics of Parkinson’s disease. Annu. Rev. Genomics Hum. Genet. 12 (2011) 301–325. CrossrefGoogle Scholar

  • [58] Hegde, M.L., Vasudevaraju P. and Rao, K.J. DNA induced folding/fibrillation of alpha-synuclein: new insights in Parkinson’s disease. Front. Biosci. 15 (2010) 418–436. CrossrefGoogle Scholar

  • [59] Hegde, M.L. and Jagannatha Rao, K.S. Challenges and complexities of alpha-synuclein toxicity: new postulates in unfolding the mystery associated with Parkinson’s disease. Arch. Biochem. Biophys. 418 (2003) 169–178. Google Scholar

  • [60] Vicente Miranda, H. and Outeiro, T.F. The sour side of neurodegenerative disorders: the effects of protein glycation. J. Pathol. 221 (2010) 13–25. Google Scholar

  • [61] Padmaraju, V., Bhaskar, J.J., Prasada Rao, U.J., Salimath, P.V. and Rao, K.S. Role of advanced glycation on aggregation and DNA binding properties of alpha-synuclein. J. Alzheimers Dis. 24 (2011) 211–221. Google Scholar

  • [62] Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D., Housman, D. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl. Acad. Sci. USA 96 (1999) 11404–11409. CrossrefGoogle Scholar

  • [63] Choonara, Y.E., Pillay, V., du Toit, L.C. Modi, G., Naidoo, D., Ndesendo, V.M. and Sibambo, S.R. Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders. Int. J. Mol. Sci. 10 (2009) 2510–2557. CrossrefGoogle Scholar

  • [64] Ve’ronique, V.B., Hussein, D., Patrick, A.D., Edor, K., Rouleau Guy, A.R. and Paul, V.N. TDP-43, protein aggregation, and amyotrophic lateral sclerosis. US Neurology 5 (2010) 35–38. Google Scholar

  • [65] Gros-Louis, F., Gaspar, C. and Rouleau, G.A. Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim. Biophys. Acta 1762 (2006) 956–972. Google Scholar

  • [66] Chou, S.M., Wang, H.S., Taniguchi, A. and Bucala, R. Advanced glycation end products in neurofilament conglomeration of motoneurons in familial and sporadic amyotrophic lateral sclerosis. Mol. Med. 4 (1998) 324–332. Google Scholar

  • [67] Shibata, N., Hirano, A., Hedley-Whyte, E.T., Dal Canto, M.C., Nagai, R., Uchida, K., Horiuchi, S., Kawaguchi, M., Yamamoto, T. and Kobayashi, M. Selective formation of certain advanced glycation end products in spinal cord astrocytes of humans and mice with superoxide dismutase-1 mutation. Acta Neuropathol. 104 (2002) 171–78. CrossrefGoogle Scholar

  • [68] Iłzecka, J. Serum-soluble receptor for advanced glycation end product levels in patients with amyotrophic lateral sclerosis. Acta Neurol. Scand. 120 (2009) 119–122. CrossrefGoogle Scholar

  • [69] Sakaguchi, T., Yan, S.F., Yan, S.D., Belov, D., Rong, L.L., Sousa, M., Andrassy, M., Marso, S.P., Duda, S., Arnold, B., Liliensiek, B., Nawroth, P.P., Stern, D.M. Schmidt, A.M. and Naka, Y. Central role of RAGE-dependent neointimal expansion in arterial restenosis J. Clin. Invest. 11 (2003) 959–972. CrossrefGoogle Scholar

  • [70] Takamiya, R., Takahashi, M., Myint, T., Park, Y.S., Miyazawa, N., Endo, T., Fujiwara, N., Sakiyama, H., Misonou, Y., Miyamot, Y., Fujii, J. and Taniguchi, N. Glycation proceeds faster in mutated Cu, Zn superoxide dismutases related to familial amyotrophic lateral sclerosis. FASEB J. 17 (2003) 938–940. Google Scholar

  • [71] Kaufmann, E., Boehm, B.O., Süssmuth, S.D., Kientsch-Engel, R., Sperfeld, A.C., Ludolph, A. and Tumani, H. The advanced glycation end product N epsilon-(carboxymethyl) lysine level is elevated in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Neurosci. Lett. 371 (2004) 226–229. Google Scholar

  • [72] Andrade, C.A. Peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain 75 (1952) 408–427. CrossrefGoogle Scholar

  • [73] Saraiva, M.J., Birken, S., Costa, P.P. and Goodman, D.S. Amyloid fibril protein in familial amyloidotic polyneuropathy, Portuguese type. Definition of molecular abnormality in transthyretin (prealbumin). J. Clin. Invest. 74 (1984) 104–119. CrossrefGoogle Scholar

  • [74] da Costa, G., Gomes, R.A., Guerreiro, A., Mateus, É., Monteiro, E., Barroso, E., Coelho, A.V., Freire, A.P. and Cordeiro, C. Beyond genetic factors in familial amyloidotic polyneuropathy: protein glycation and the loss of fibrinogen’s chaperone activity. PLoS One 6 (2011) e24850. Google Scholar

  • [75] Matsunaga, N., Anan, I., Forsgren, S., Nagai, R., Rosenberg, P., Horiuchi, S., Ando, Y. and Suhr, O.B. Advanced glycation end products (AGE) and the receptor for AGE are present in gastrointestinal tract of familial amyloidotic polyneuropathy patients but do not induce NF-κB activation. Acta Neuropathol. 104 (2002) 441–447. Google Scholar

  • [76] Sousa, M.M., Du Yan, S., Fernandes, R., Guimaraes, A., Stern, D. and Saraiva, M.J. Familial amyloid polyneuropathy, receptor for advanced glycation end products-dependent triggering of neuronal inflammatory and apoptotic pathways. J. Neurosci. 21 (2001) 7576–7586. Google Scholar

  • [77] Shorter, J. and Lindquist, S. Prions as adaptive conduits of memory and inheritance. Nat. Rev. Genet. 6 (2005) 435–450. CrossrefGoogle Scholar

  • [78] Knight, R.S. and Will, R.G. Prion diseases. J. Neurol. Neurosurg. Psychiat. 75 (2004) 36–42. CrossrefGoogle Scholar

  • [79] Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 95 (1998) 13363–13383. CrossrefGoogle Scholar

  • [80] Soto, C. and Castilla, J. The controversial protein-only hypothesis of prion propagation. Nat. Med. 10 (2004) 63–67. CrossrefGoogle Scholar

  • [81] Didonna, A. Prion protein and its role in signal transduction. Cell. Mol. Biol. Lett. 18 (2013) 209–230. Google Scholar

  • [82] Sasaki, N., Takeuchi, M., Chowei, H., Kikuchi, S., Hayashi, Y., Nakano, N., Ikeda, H., Yamagishi, S., Kitamoto, T., Saito, T. and Makita, Z. Advanced glycation end products (AGE) and their receptor (RAGE) in the brain of patients with Creutzfeldt-Jakob disease with prion plaques. Neurosci. Lett. 326 (2002) 117–120. CrossrefGoogle Scholar

  • [83] Choi, Y.G., Kim, J.I., Jeon, Y.C., Park, S.J., Choi, E.K., Rubenstein, R., Kascsak, R.J., Carp, R.I. and Kim, Y.S. Nonenzymatic glycation at the N-terminus of pathogenic prion protein in transmissible spongiform encephalopathies. J. Biol. Chem. 279 (2004) 30402–30409. Google Scholar

  • [84] Southern, L., Williams, J. and Esiri, M.M. Immunohistochemical study of N-epsilon-carboxymethyl lysine (CML) in human brain: relation to vascular dementia. BMC Neurol. 7 (2007) 35. CrossrefGoogle Scholar

  • [85] Yaffe, K., Lindquist, K., Schwartz, A.V., Vitartas, C., Vittinghoff, E., Satterfield, S., Simonsick, E.M., Launer, L., Rosano, C., Cauley, J.A. and Harris, T. Advanced glycation end product level, diabetes, and accelerated cognitive aging. Neurology 77 (2011) 1351–1356. CrossrefGoogle Scholar

  • [86] Srikanth, V.., Westcott, B., Forbes, J., Phan, T.G., Beare, R., Venn, A., Pearson, S., Greenaway, T., Parameswaran, V. and Münch, G. Methylglyoxal, cognitive function and cerebral atrophy in older people. J. Gerontol. A Biol. Sci. Med. Sci. 68 (2013) 68–73. CrossrefGoogle Scholar

  • [87] Vlassara, H. and Uribarri, J. Glycoxidation and diabetic complications: modern lessons and a warning? Rev. Endocr. Metab. Disord. 5 (2004) 181–188. CrossrefGoogle Scholar

  • [88] Goldberg, T., Cai, W., Peppa, M., Dardaine, V., Baliga, B.S., Uribarri, J. and Vlassara, H. Advanced glycoxidation end products in commonly consumed foods. J. Am. Diet. Assoc. 104 (2004) 1287–1291. CrossrefGoogle Scholar

  • [89] Wautier, J.L. and Schmidt, A.M. Protein glycation: a firm link to endothelial cell dysfunction. Circ. Res. 95 (2004) 233–238. CrossrefGoogle Scholar

  • [90] Vlassara, H., Cai, W., Crandall, J., Goldberg, T., Oberstein, R., Dardaine, V., Peppa, M. and Rayfield, E.J. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc. Natl. Acad. Sci. USA 99 (2002) 15596–15601. CrossrefGoogle Scholar

  • [91] Förster, A., Kuhne, Y. and Henle, T. Studies on absorption and elimination of dietary Maillard reaction products. Ann. N. Y. Acad. Sci. 1043 (2005) 474–481. Google Scholar

  • [92] Henle, T. AGEs in foods: do they play a role in uremia?. Kidney Int. Suppl. 63 (2003) S145–S147. CrossrefGoogle Scholar

  • [93] Cai, W., Gao, Q.D., Zhu, L., Peppa, M., He, C. and Vlassara, H. Oxidative stress-inducing carbonyl compounds from common foods: novel mediators of cellular dysfunction. Mol. Med. 8 (2002) 337–346. Google Scholar

  • [94] Miyata, T., Ishikawa, N. and van Ypersele de Strihou, C. Carbonyl stress and diabetic complications. Clin. Chem. Lab. Med. 41 (2003) 1150–1158. Google Scholar

  • [95] Cai, W., Uribarri, J., Zhu, L., Chen, X., Swamy, S., Zhao, Z., Grosjean, F., Simonaro, C., Kuchel, G.A., Schnaider-Beeri, M., Woodward, M., Striker, G.E. and Vlassara, H. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc. Natl. Acad. Sci. USA 111 (2014) 4940–4945. CrossrefGoogle Scholar

  • [96] van Boekel, M.A., van den Bergh, P.J. and Hoenders, H.J. Glycation of human serum albumin: inhibition by diclofenac. Biochim. Biophys. Acta 1120 (1992) 201–204. Google Scholar

  • [97] Baynes, J.W. Role of oxidative stress in development of complication in diabetes. Diabetes 40 (1991) 405–412. CrossrefGoogle Scholar

  • [98] Price, D.L., Rhett, P.M., Thorpe, S.R. and Baynes, J.W. Chelating activity of advanced glycation end product (AGE) inhibitors. J. Biol. Chem. 276 (2001) 48967–48972. Google Scholar

  • [99] Nagai, R., Murray, D.B., Metz, T.O. and Baynes, J.W. Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications. Diabetes 61 (2012) 549–559. CrossrefGoogle Scholar

  • [100] Webster, J., Urban, C., Berbaum, K., Loske, C., Alpar, A., Gärtner, U., Garcia de Arriba, S., Arendt, T. and Munch, G. The carbonyl scavengers aminoguanidine and tenilsetam protect against the neurotoxic effects of methylglyoxal. Neurotox. Res. 7 (2005) 95–101. CrossrefGoogle Scholar

  • [101] Munch, G., Taneli, Y., Schraven, E., Schindler, U., Schinzel, R., Palm, D. and Riederer, P. The cognition-enhancing drug tenilsetam is an inhibitor of protein crosslinking by advanced glycosylation. J. Neural. Transm. Park. Dis. Dement. Sect. 8 (1994) 193–208. CrossrefGoogle Scholar

  • [102] Jakus, V., Hrnciarova, M., Carsky, J., Krahulec, B. and Rietbrock, N. Inhibition of nonenzymatic protein glycation and lipid peroxidation by drugs with anti-oxidant activity. Life Sci. 65 (1999) 1991–1993. CrossrefGoogle Scholar

  • [103] Keita, Y., Michailova, M., Kratzer, W., Wörner, G., Wörner, W. and Rietbrock, N. Influence of penicillamine on the formation of early nonenzymatic glycation products of human serum proteins. Int. J. Clin. Pharmacol. Ther. Toxicol. 30 (1992) 441–442. Google Scholar

  • [104] Stevens, A. The effectiveness of putative anti-cataract agents in the prevention of protein glycation. J. Am. Optom. Assoc. 66 (1995) 744–749. Google Scholar

  • [105] Vasan, S., Zhang, X., Zhang, X., Kapurniotu, A., Bernhagen, J., Teichberg, S., Basgen, J., Wagle, D., Shih, D., Terlecky, I., Bucala, R., Cerami, A., Egan, J. and Ulrich, P. An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 382 (1996) 275–278. Google Scholar

  • [106] Sajithlal, G.B., Chittra, P. and Chandrakasan, G. Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochem. Pharmacol. 56 (1998) 1607–1614. CrossrefGoogle Scholar

  • [107] Wilkinson-Berka, J.L., Kelly, D.J., Koerner, S.M., Jaworski, K., Davis, B., Thallas, V. and Cooper, M.E. ALT-946 and aminoguanidine, inhibitors of advanced glycation, improve severe nephropathy in the diabetic transgenic (mREN-2)27 rat. Diabetes 51 (2002) 3283–3289. Google Scholar

  • [108] Forbes, J.M., Soulis, T., Thallas, V., Panagiotopoulos, S., Long, D.M., Vasan, S., Wagle, D., Jerums, G. and Cooper, M. E. Renoprotective effects of a novel inhibitor of advanced glycation. Diabetologia 44 (2001) 108–114. CrossrefGoogle Scholar

  • [109] Kikuchi, S., Shinpo, K., Moriwaka, F., Makita, Z., Miyata, T. and Tashiro, K. Neurotoxicity of methylglyoxal and 3-deoxyglucosone on cultured cortical neurons: synergism between glycation and oxidative stress, possibly involved in neurodegenerative diseases. J. Neurosci. Res. 57 (1991) 280–289. Google Scholar

  • [110] Dukic-Stefanovic, S., Schinzel, R., Riederer, P. and Munch, G. AGES in brain ageing: AGE-inhibitors as neuroprotective and anti-dementia drugs? Biogerontology 2 (2001) 19–34. CrossrefGoogle Scholar

  • [111] Ihl, R., Perisic, I., Maurer, K. and Dierks, T. Effect of 3 months treatment with tenilsetam in patients suffering from dementia of Alzheimer’s type (DAT). J. Neural. Trans. 1 (1989) 84–85. CrossrefGoogle Scholar

  • [112] Ruggiero-Lopez, D., Lecomte, M., Moinet, G., Patereau, G., Lagarde, M. and Wiernsperger, N. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation. Biochem. Pharmacol. 58 (1999) 1765–1773. CrossrefGoogle Scholar

  • [113] Beisswenger, P. and Ruggiero-Lopez, D. Metformin inhibition of glycation processes. Diabetes Metab. 29 (2003) 6S95–6S103. Google Scholar

  • [114] Beisswenger, P.J., Howell, S.K., Touchette, A.D., Lal, S. and Szwergold, S. Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes 48 (1999) 198–202 CrossrefGoogle Scholar

  • [115] Kiho, T., Kato, M., Usui, S. and Hirano, K. Effect of buformin and metformin on formation of advanced glycation end products by methylglyoxal. Clin. Chim. Acta 358 (2005) 139–145. Google Scholar

  • [116] Bonnefont-Rousselot, D. Antioxidant and anti-AGE therapeutics: evaluation and perspectives. J. Soc. Biol. 195 (2001) 391–398. Google Scholar

  • [117] Hipkiss, A.R. Carnosine, a protective, anti-ageing peptide? Int. J. Biochem. Cell Biol. 30 (1998) 863–868. CrossrefGoogle Scholar

  • [118] Sobal, G., Menzel, E.J. and Sinzinger, H. Calcium antagonists as inhibitors of in vitro low density lipoprotein oxidation and glycation. Biochem. Pharmacol. 61 (2001) 373–379. CrossrefGoogle Scholar

  • [119] Akira, K., Amano, M., Okajima, F., Hashimoto, T. and Oikawa, S.S. Inhibitory effects of amlodipine and fluvastatin on the deposition of advanced glycation end products in aortic wall of cholesterol and fructosefed rabbits. Biol. Pharm. Bull. 29 (2006) 75–81. CrossrefGoogle Scholar

  • [120] Verbeke, P., Siboska, G.E., Clark, B.F. and Rattan, S.I. Kinetin inhibits protein oxidation and glycoxidation in vitro. Biochem. Biophys. Res. Commun. 276 (2000) 1265–1270. CrossrefGoogle Scholar

  • [121] Jung, Y.S., Joe, B.Y., Cho, S.J. and Konishi, Y. 2,3-Dimethoxy-5-methyl-1,4-benzoquinones and 2-methyl-1,4-naphthoquinones: glycation inhibitors with lipid peroxidation activity. Bioorg. Med. Chem. Lett. 15 (2005) 1125–1129. Google Scholar

  • [122] Culbertson, S.M., Enright, G.D. and Ingold, K.U. Synthesis of a novel radical trapping and carbonyl group trapping anti-AGE agent: a pyridoxamine analogue for inhibiting advanced glycation (AGE) and lipoxidation (ALE) end products. Org. Lett. 5 (2003) 2659–2662. CrossrefGoogle Scholar

  • [123] Meeprom, A., Sompong, W., Chan, C.B. and Adisakwattana, S. Isoferulic acid, a new anti-glycation agent, inhibits fructose- and glucose-mediated protein glycation in vitro. Molecules 18 (2013) 6439–6454. CrossrefGoogle Scholar

  • [124] Freedman, B.I., Wuerth, J.P., Cartwright, K., Bain, R.P., Dippe, S., Hershon, K., Mooradian, A.D. and Spinowitz, B.S. Design and baseline characteristics for the aminoguanidine Clinical trial in overt type 2 diabetic nephropathy (ACTION II). Control. Clin. Trials 20 (1999) 493–510. CrossrefGoogle Scholar

  • [125] Thornalley, P.J. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation end products. Arch. Biochem. Biophys. 419 (2003) 31–40. Google Scholar

  • [126] Williams, M.E. Clinical studies of advanced glycation end product inhibitors and diabetic kidney disease. Curr. Diab. Rep. 4 (2004) 441–446. CrossrefGoogle Scholar

  • [127] Hager, K., Marahrens, A., Kenklies, M., Riederer, P. and Münch, G. Alphalipoic acid as a new treatment option for Azheimer type dementia. Arch. Gerontol. Geriat. 32 (2001) 275–282. CrossrefGoogle Scholar

  • [128] Zhao, J. and Zhong, C.J. A review on research progress of transketolase. Neurosci. Bull. 25 (2009) 94–99. CrossrefGoogle Scholar

  • [129] Shangari, N., Bruce, W.R., Poon, R. and O’Brien, P.J. Toxicity of glyoxalsrole of oxidative stress, metabolic detoxification and thiamine deficiency. Biochem. Soc. Trans. 31 (2003) 1390–393. CrossrefGoogle Scholar

  • [130] Tarwadi, K.V. and Agte, V.V. Effect of micronutrients on methylglyoxal mediated in vitro glycation of albumin. Biol. Trace. Elem. Res. 143 (2011) 717–725. CrossrefGoogle Scholar

  • [131] Breslow, R. The mechanism of thiamine action: predictions from model experiments. Ann. N. Y. Acad. Sci. 98 (1962) 445–452. Google Scholar

  • [132] Pohl, M., Sprenger, G.A. and Muller, M. A new perspective on thiamine catalysis. Curr. Opin. Biotechnol. 15 (2004) 335–342. CrossrefGoogle Scholar

  • [133] Voziyan, P.A. and Hudson, B.G. Pyridoxamine as a multifunctional pharmaceutical: targeting pathogenic glycation and oxidative damage. Cell Mol. Life Sci. 62 (2005) 1671–1681. CrossrefGoogle Scholar

  • [134] Chandler, D., Woldu, A., Rahmadi, A., Shanmuga, K., Steiner, N., Wright, E., Benavente-García, O., Schulz, O., Castillo, J. and Münch, G. Effects of plant-derived polyphenols on TNF-alpha and nitric oxide production induced by advanced glycation end products. Mol. Nutr. Food Res. 54 (2010) 141–150. CrossrefGoogle Scholar

  • [135] Kim, J., Lee, H.J. and Lee, K.W. Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J. Neurochem. 112 (2010) 1415–1430. CrossrefGoogle Scholar

  • [136] Weinreb, O., Amit, T., Mandel, S. and Youdim, M.B. Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate, a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr. 4 (2009) 283–296. CrossrefGoogle Scholar

  • [137] Dorsey, P.G. and Greenspan, P. Inhibition of nonenzymatic protein glycation by pomegranate and other fruit juices. J. Med. Food 17 (2014) 447–454 CrossrefGoogle Scholar

  • [138] Lv, L., Shao, X., Chen, H., Ho, C.T. and Sang, S. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal. Chem. Res. Toxicol. 24 (2011) 579–586. CrossrefGoogle Scholar

  • [139] Perez Gutierrez, R.M. Inhibition of advanced glycation end product formation by Origanum majorana l. in vitro and in streptozotocin-induced diabetic rats. Evid. Based Complement Alternat. Med. 598638 (2012) 18. Google Scholar

  • [140] Aldini, G., Vistoli, G., Stefek, M., Chondrogianni, N., Grune, T., Sereikaite, J., Sadowska-Bartosz, I. and Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic. Res. 1 (2013) 93137. Google Scholar

  • [141] Deane, R., Singh, I., Sagare, A.P., Bell, R.D., Ross, N.T., LaRue, B., Love, R., Perry, S., Paquette, N., Deane, R.J., Thiyagarajan, M., Zarcone, T., Fritz, G., Friedman, A.E., Miller, B.L. and Zlokovi, B.V. A multimodal RAGE specific inhibitor reducesamyloid β-mediated brain disorder in a mouse model of Alzheimer’s disease. J. Clin. Invest. 122 (2012) 1377–1392. CrossrefGoogle Scholar

  • [142] Han, Y.T., Choi, G.I., Son, D., Kim, N.J., Yun, H., Lee, S., Chang, D.J., Hong, H.S., Kim, H., Ha, H.J., Kim, Y.H., Park, H.J., Lee, J., Suh, Y.G. Ligand-based design, synthesis, and biological evaluation of 2-aminopyrimidines, a novel series of receptor for advanced glycation end products (RAGE) inhibitors. J. Med. Chem. 55 (2012) 9120–9135. CrossrefGoogle Scholar

  • [143] Gospodarska, E., Kupniewska-Kozak, A., Goch, G. and Dadlez, M. Binding studies of truncated variants of the A β peptide to the V-domain of the RAGE receptor reveal A β residues responsible for binding. Biochim. Biophys. Acta 1814 (2011) 592–609. Google Scholar

  • [144] Webster, S.J., Mruthinti, S., Hill, W.D., Buccafusco, J.J. and Terry. A.V.J. An aqueous orally active vaccine targeted againsta RAGE/AB complex as a novel therapeutic for Alzheimer’s disease. Neuromolecular Med. 14 (2012) 119–130. CrossrefGoogle Scholar

  • [145] Yu, W., Wu, J., Cai, F., Xiang, J., Zha, W., Fan, D., Guo, S., Ming, Z. and Liu, C. Curcumin alleviates diabetic cardiomyopathy in experimental diabeticrats. PLoS One 7 (2012) e52013. Google Scholar

  • [146] Yan, F.L., Zheng, Y. and Zhao, F.D. Effects of Ginkgo biloba extract EGb761 on expression of RAGE and LRP-1 in cerebral microvascular endothelial cells under chronic hypoxia and hypoglycemia. Acta Neuropathol. 116 (2008) 529–535. Google Scholar

  • [147] Preston, J.E., Hipkiss, A.R., Himsworth, D.T., Romero, I.A. and Abbott, J.N. Toxic effects of beta-amyloid (25–35) on immortalised rat brain endothelial cell: protection by carnosine, homocarnosine and beta-alanine. Neurosci. Lett. 242 (1998) 105–108. Google Scholar

  • [148] Delpierre, G., Rider, M.H., Collard, F., Stroobant, V., Vanstapel, F., Santos, H. and Van Schaftingen, E. Identification, cloning, and heterologous expression of a mammalian fructosamine-3-kinase. Diabetes 49 (2000) 1627–1634. CrossrefGoogle Scholar

  • [149] Szwergold, B.S., Howell, S. and Beisswenger, P.J. Human fructosamine-3-kinase. Purification, sequencing, substrate specificity, and evidence of activity in vivo. Diabetes 50 (2001) 2139–2147. CrossrefGoogle Scholar

  • [150] Delpierre, G., Collard, F., Fortpied, J. and van Schaftingen, E. Fructosamine-3-kinase is involved in an intracellulardeglycation pathway in human erythrocytes. Biochem. J. 365 (2002) 801–808. Google Scholar

  • [151] Delpierre, G. and Van Schaftingen, E. Fructosamine 3-kinase, an enzyme involved in protein deglycation. Biochem. Soc. Trans. 31 (2003) 1354–1357. CrossrefGoogle Scholar

  • [152] Delpierre, G., Vertommen, D., Communi, D., Rider, M.H. and Van Schaftingen, E. Identification of fructosamine residues deglycated by fructosamine 3-kinase in human hemoglobin. J. Biol. Chem. 279 (2004) 27613–27620. Google Scholar

  • [153] Veiga-da-Cunha, M., Jacquemin, P., Delpierre, G., Godfraind, C., Theate, I., Vertommen, D., Clotman, F., Lemaigre, F., Devuys, O. and Van Schaftingen, E. Increased protein glycation in fructosamine 3-kinasedeficient mice. Biochem. J. 399 (2006) 257–264. Google Scholar

  • [154] Sakiyama, H., Takahashi, M., Yamamoto, T., Teshima, T., Lee, S.H., Miyamoto, Y., Misonou, Y. and Taniguchi, N. The internalization and metabolism of 3-deoxyglucosone in human umbilical vein endothelial cells. J. Biochem. 139 (2006) 245–253. CrossrefGoogle Scholar

  • [155] Mannervik, B. Molecular enzymology of the glyoxalase system. Drug Metabol. Drug Interact. 23 (2008) 13–27. Google Scholar

  • [156] Kuhla, B., Luth, H.J., Haferburg, D., Boeck, K., Arendt, T. and Munch, G. Methylglyoxal, glyoxal and their detoxification in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1043 (2005) 211–216. Google Scholar

About the article

Published Online: 2014-09-12

Published in Print: 2014-09-01

Citation Information: Cellular and Molecular Biology Letters, Volume 19, Issue 3, Pages 407–437, ISSN (Online) 1689-1392, ISSN (Print) 1425-8153, DOI: https://doi.org/10.2478/s11658-014-0205-5.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Claire Lastrucci, Vincent Baillif, Annie Behar, Talal Al Saati, Marc Dubourdeau, Isabelle Maridonneau-Parini, and Céline Cougoule
The FASEB Journal, 2015, Volume 29, Number 5, Page 1914
Kwang Sik Suh, Eun Mi Choi, Woon-Won Jung, Yu Jin Kim, Soo Min Hong, So Yong Park, Sang Youl Rhee, and Suk Chon
International Journal of Molecular Medicine, 2017, Volume 40, Number 2, Page 539
Sidra Islam, Moinuddin, Abdul Rouf Mir, Alok Raghav, Safia Habib, Khursheed Alam, and Asif Ali
Journal of Biomolecular Structure and Dynamics, 2017, Page 1
Yunpeng Wei, Dan Liu, Yin Zheng, Honglian Li, Chaoshuang Hao, and Wuqing Ouyang
Brain Research Bulletin, 2017
V. I. Muronetz, A. K. Melnikova, Z. N. Seferbekova, K. V. Barinova, and E. V. Schmalhausen
Biochemistry (Moscow), 2017, Volume 82, Number 8, Page 874
Ayumi Tsutsui, Ambara R. Pradipta, Shinobu Kitazume, Naoyuki Taniguchi, and Katsunori Tanaka
Org. Biomol. Chem., 2017, Volume 15, Number 32, Page 6720
Tina C. Franklin, Eric S. Wohleb, Yi Zhang, Manoela Fogaça, Brendan Hare, and Ronald S. Duman
Biological Psychiatry, 2017
Rosaria Greco, Chiara Demartini, Anna Maria Zanaboni, Fabio Blandini, Diana Amantea, and Cristina Tassorelli
European Journal of Pharmacology, 2017, Volume 800, Page 16
Giulia Abate, Mariagrazia Marziano, Wiramon Rungratanawanich, Maurizio Memo, and Daniela Uberti
Oxidative Medicine and Cellular Longevity, 2017, Volume 2017, Page 1
Asif Zaman, Zarina Arif, and Khursheed Alam
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, Volume 174, Page 171
Sharon R Cooper, James D Jontes, and Marcos Sotomayor
eLife, 2016, Volume 5
Naoyuki Taniguchi, Motoko Takahashi, Yasuhiko Kizuka, Shinobu Kitazume, Vladimir V. Shuvaev, Tomomi Ookawara, and Akiko Furuta
Glycoconjugate Journal, 2016, Volume 33, Number 4, Page 487
Parveen Salahuddin, Mohammad Khursheed Siddiqi, Sanaullah Khan, Ali Saber Abdelhameed, and Rizwan Hasan Khan
Journal of Molecular Structure, 2016, Volume 1123, Page 311
Izabela Sadowska-Bartosz and Grzegorz Bartosz
Molecules, 2015, Volume 20, Number 2, Page 3309
Izabela Sadowska-Bartosz, Sabina Galiniak, and Grzegorz Bartosz
Molecules, 2014, Volume 19, Number 11, Page 18828
Raffaella Mastrocola, Debora Nigro, Alessia S. Cento, Fausto Chiazza, Massimo Collino, and Manuela Aragno
Neurobiology of Disease, 2016, Volume 89, Page 65
Rashmi Ray, Judyta K. Juranek, and Vivek Rai
Neuroscience & Biobehavioral Reviews, 2016, Volume 62, Page 48
Abdul Rouf Mir and Moinuddin
Clinica Chimica Acta, 2015, Volume 450, Page 25
Dorit Bennmann, Christoph Kannicht, Claudine Fisseau, Kathleen Jacobs, Alexander Navarette-Santos, Britt Hofmann, and Rüdiger Horstkorte
Mechanisms of Ageing and Development, 2015, Volume 150, Page 1
Zhiyou Cai, Nannuan Liu, Chuanling Wang, Biyong Qin, Yingjun Zhou, Ming Xiao, Liying Chang, Liang-Jun Yan, and Bin Zhao
Cellular and Molecular Neurobiology, 2016, Volume 36, Number 4, Page 483
Andreas Simm, Beatrice Müller, Norbert Nass, Britt Hofmann, Hasan Bushnaq, Rolf-Edgar Silber, and Babett Bartling
Experimental Gerontology, 2015, Volume 68, Page 71

Comments (0)

Please log in or register to comment.
Log in