Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 19, Issue 3

miR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells

Anahita Shaer / Negar Azarpira / Akbar Vahdati / Mohammad Karimi / Mehrdad Shariati
Published Online: 2014-09-12 | DOI: https://doi.org/10.2478/s11658-014-0207-3


This paper focuses on the development of renewable sources of isletreplacement tissue for the treatment of type I diabetes mellitus. Placental tissue-derived mesenchymal stem cells (MSCs) are a promising source for regenerative medicine due to their plasticity and easy availability. They have the potential to differentiate into insulin-producing cells. miR-375 is a micro RNA that is expressed in the pancreas and involved in islet development. Human placental decidua basalis MSCs (PDB-MSCs) were cultured from full-term human placenta. The immunophenotype of the isolated cells was checked for CD90, CD105, CD44, CD133 and CD34 markers. The MSCs (P3) were chemically transfected with hsa-miR-375. Total RNA was extracted 4 and 6 days after transfection. The expressions of insulin, NGN3, GLUT2, PAX4, PAX6, KIR6.2, NKX6.1, PDX1, and glucagon genes were evaluated using real-time qPCR. On day 6, we tested the potency of the clusters in response to the high glucose challenge and assessed the presence of insulin and NGN3 proteins via immunocytochemistry. Flow cytometry analysis confirmed that more than 90% of the cells were positive for CD90, CD105 and CD44 and negative for CD133 and CD34. Morphological changes were followed from day 2. Cell clusters formed during day 6. Insulin-producing clusters showed a deep red color with DTZ. The expression of pancreatic-specific transcription factors increased remarkably during the four days after transfection and significantly increased on day 7. The clusters were positive for insulin and NGN3 proteins, and C-peptide and insulin secretion increased in response to changes in the glucose concentration (2.8 mM and 16.7 mM). In conclusion, the MSCs could be programmed into functional insulin-producing cells by transfection of miR-375.

Keywords: Pancreas; Beta cells; miR-375; Placenta; Mesenchymal stromal cells; Induced pluripotent stem cell; microRNA; Insulin; Differentiation; NGN3; GLUT2; PDX1

  • [1] Cabrera, O., Berman, D.M., Kenyon, N.S., Ricordi, C., Berggren, P.O. and Caicedo, A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA 103 (2006) 2334–2339. http://dx.doi.org/10.1073/pnas.0510790103CrossrefGoogle Scholar

  • [2] Yesil, P. and Lammert, E. Islet dynamics: a glimpse at beta cell proliferation. Histol. Histopathol. 23 (2008) 883–895. Google Scholar

  • [3] Warnock, G.L., Kneteman, N.M., Ryan, E.A., Evans, M.G., Seelis, R.E., Halloran, P.F., Rabinovitch, A. and Rajotte, R.V. Continued function of pancreatic islets after transplantation in type I diabetes. Lancet 2 (1989) 570–572. http://dx.doi.org/10.1016/S0140-6736(89)90701-0CrossrefGoogle Scholar

  • [4] Warnock, G.L., Liao, Y.H., Wang, X., Ou, D., Ao, Z., Johnson, J.D., Verchere, C.B. and Thompson, D. An odyssey of islet transplantation for therapy of type 1 diabetes. World J. Surg. 31 (2007) 1569–1576. http://dx.doi.org/10.1007/s00268-007-9125-0CrossrefWeb of ScienceGoogle Scholar

  • [5] Thompson, D.M., Meloche, M., Ao, Z., Paty, B., Keown, P., Shapiro, R.J., Ho, S., Worsley, D., Fung, M., Meneilly, G., Begg, I.Al., Mehthel, M., Kondi, J., Harris, C., Fensom, B., Kozak, S.E., Tong, S.O., Trinh, M. and Warnock, G.L. Reduced progression of diabetic microvascular complications with islet cell transplantation compared with intensive medical therapy. Transplantation 91 (2011) 373–378. http://dx.doi.org/10.1097/TP.0b013e31820437f3CrossrefWeb of ScienceGoogle Scholar

  • [6] Fung, M.A., Warnock, G.L., Ao, Z., Keown, P., Meloche, M., Shapiro, R.J., Ho, S., Worsley, D., Meneilly, G.S., Ghofaili, K., Kozak, S.E., Tong, S.O., Trinh, M., Blackburn, L., Kozak, R.M., Fensom, B.A. and Thompson, D.M. The effect of medical therapy and islet cell transplantation on diabetic nephropathy: an interim report. Transplantation 84 (2007) 17–22. http://dx.doi.org/10.1097/01.tp.0000265502.92321.abCrossrefGoogle Scholar

  • [7] Thompson, D.M., Begg, I.S., Harris, C., Ao, Z., Fung, M.A., Meloche, R.M., Keown, P., Meneilly, G.S., Shapiro, R.J., Ho, S., Dawson, K.G., Al, Ghofaili, K.A.l., Riyami, L., Al, Mehthel, M., Kozak, S.E., Tong, S.O. and Warnock, G.L. Reduced progression of diabetic retinopathy after islet cell transplantation compared with intensive medical therapy. Transplantation 85 (2008) 1400–1405. http://dx.doi.org/10.1097/TP.0b013e318172ca07CrossrefGoogle Scholar

  • [8] Warnock, G.L., Meloche, R.M., Thompson, D., Shapiro, R.J., Fung, M., Ao, Z., Ho, S., He, Z., Dai, L.J., Young, L., Blackburn, L., Kozak, S., Kim, P.T., Al-Adra D., Johnson, J.D., Liao, Y.H., Elliott, T. and Verchere, C.B. Improved human pancreatic islet isolation for a prospective cohort study of islet transplantation vs best medical therapy in type 1 diabetes mellitus. Arch. Surg. 140 (2005) 735–744. http://dx.doi.org/10.1001/archsurg.140.8.735CrossrefGoogle Scholar

  • [9] Shapiro, A.M., Lakey, J.R., Ryan, E.A., Korbutt, G.S., Toth, E., Warnock, G.L., Kneteman, N.M. and Rajotte, R.V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343 (2000) 230–238. http://dx.doi.org/10.1056/NEJM200007273430401CrossrefGoogle Scholar

  • [10] Johnson, J.D., Ao, Z., Ao, P., Li, H., Dai, L.J., He, Z., Tee, M., Potter, K.J., Klimek, A.M., Meloche, R.M., Thompson, D.M., Verchere, C.B. and Warnock, G.L. Different effects of FK506, rapamycin, and mycophenolate mofetil on glucose-stimulated insulin release and apoptosis in human islets. Cell Transplant. 18 (2009) 833–845. http://dx.doi.org/10.3727/096368909X471198CrossrefWeb of ScienceGoogle Scholar

  • [11] Marappagounder, D., Somasundaram, I., Dorairaj, S. and Sankaran, R.J. Differentiation of mesenchymal stem cells derived from human bone marrow and subcutaneous adipose tissue into pancreatic islet-like clusters in vitro. Cell. Mol. Biol. Lett. 18 (2013) 75–88. http://dx.doi.org/10.2478/s11658-012-0040-5CrossrefWeb of ScienceGoogle Scholar

  • [12] Harasymiak-Krzyżanowska, I., Niedojadło, A., Karwat, J., Kotuła, L., Gil-Kulik, P., Sawiuk, M. and Kocki, J. Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications. Cell. Mol. Biol. Lett. 18 (2013) 479–493. http://dx.doi.org/10.2478/s11658-013-0101-4CrossrefWeb of ScienceGoogle Scholar

  • [13] Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S. and Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433 (2005) 769–773. http://dx.doi.org/10.1038/nature03315CrossrefGoogle Scholar

  • [14] Bartel, D.P. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 116 (2004) 281–297. http://dx.doi.org/10.1016/S0092-8674(04)00045-5CrossrefGoogle Scholar

  • [15] Stefani, G. and Slack, F.J. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol. 9 (2008) 219–230. http://dx.doi.org/10.1038/nrm2347Web of ScienceCrossrefGoogle Scholar

  • [16] Ambros, V. microRNAs: tiny regulators with great potential. Cell 107 (2001) 823–826. http://dx.doi.org/10.1016/S0092-8674(01)00616-XCrossrefGoogle Scholar

  • [17] Smallridge, R. A small fortune. Nat. Rev. Mol. Cell Biol. 2 (2001) 867. http://dx.doi.org/10.1038/35103036CrossrefGoogle Scholar

  • [18] Kloosterman, W.P., Lagendijk, A.K., Ketting, R.F., Moulton, J.D. and Plasterk, R.H. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 5 (2007) e203. http://dx.doi.org/10.1371/journal.pbio.0050203Web of ScienceCrossrefGoogle Scholar

  • [19] Baroukh, N., Ravier, M.A., Loder, M.K., Hill, E.V., Bounacer, A., Scharfmann, R., Rutter, G.A. and Van, Obberghen, E. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J. Biol. Chem. 282 (2007) 19575–19588. http://dx.doi.org/10.1074/jbc.M611841200Google Scholar

  • [20] Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P. and Stoffel, M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432 (2004) 226–230. http://dx.doi.org/10.1038/nature03076CrossrefGoogle Scholar

  • [21] Gauthier, B.R. and Wollheim, C.B. MicroRNAs: ribo-regulators’ of glucose homeostasis. Nat. Med. 12 (2006) 36–38. http://dx.doi.org/10.1038/nm0106-36CrossrefGoogle Scholar

  • [22] Cuellar, T.L. and McManus, M.T. MicroRNAs and endocrine biology. J. Endocrinol. 187 (2005) 327–332. http://dx.doi.org/10.1677/joe.1.06426CrossrefGoogle Scholar

  • [23] Xiao, J., Luo, X., Lin, H., Zhang, Y., Lu, Y., Wang, N., Zhang, Y., Yang, B. and Wang, Z. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J. Biol. Chem. 282 (2007) 12363–12367. http://dx.doi.org/10.1074/jbc.C700015200CrossrefWeb of ScienceGoogle Scholar

  • [24] Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J.J. and Natarajan, R. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc. Natl. Acad. Sci. USA 104 (2007) 3432–3437. http://dx.doi.org/10.1073/pnas.0611192104CrossrefWeb of ScienceGoogle Scholar

  • [25] Tang, X., Tang, G. and Ozcan, S. Role of microRNAs in diabetes. Biochim. Biophys. Acta 1779 (2008) 697–701. http://dx.doi.org/10.1016/j.bbagrm.2008.06.010CrossrefGoogle Scholar

  • [26] Keller, D.M., McWeeney, S., Arsenlis, A., Drouin, J., Wright, C.V., Wang, H., Wollheim, C.B., White, P., Kaestner, K.H. and Goodman, R.H. Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy. J. Biol. Chem. 282 (2007) 32084–32092. http://dx.doi.org/10.1074/jbc.M700899200CrossrefWeb of ScienceGoogle Scholar

  • [27] Yu, X.X., Shi, Y.A., Xin, Y., Zhang, L.H., Li, Y.L. and Wu, S. Biologic characteristics of rat bone marrow mesenchymal stem cells cultured in vitro. Zhonghua Bing Li Xue Za Zhi 36 (2007) 550–554. Google Scholar

  • [28] Marcus, A.J., Coyne, T.M., Rauch, J., Woodbury, D. and Black, I.B. Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation 76 (2008) 130–144. http://dx.doi.org/10.1111/j.1432-0436.2007.00194.xWeb of ScienceCrossrefGoogle Scholar

  • [29] Latif, Z.A., Noel, J. and Alejandro, R.A. Simple method of staining fresh and cultured islets. Transplantation 45 (1988) 827–830. http://dx.doi.org/10.1097/00007890-198804000-00038CrossrefGoogle Scholar

  • [30] Wei, R., Yang, J., Liu, G.Q., Gao, M.J., Hou, W.F., Zhang, L., Gao, H.W., Liu, Y., Chen, G.A. and Hong, T.P. Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulinproducing cells. Gene 518 (2013) 246–255. http://dx.doi.org/10.1016/j.gene.2013.01.038CrossrefGoogle Scholar

  • [31] Le, Blanc, K., Samuelsson, H., Gustafsson, B., Remberger, M., Sundberg, B., Arvidson, J., Ljungman, P., Lönnies, H., Nava, S. and Ringdén, O. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 21 (2008) 1733–1738. http://dx.doi.org/10.1038/sj.leu.2404777CrossrefGoogle Scholar

  • [32] Macmillan, M.L., Blazar, B.R., DeFor, T.E. and Wagner, J.E. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant. 43 (2009) 447–454. http://dx.doi.org/10.1038/bmt.2008.348CrossrefGoogle Scholar

  • [33] Zanini, C., Bruno, S., Mandili, G., Baci, D., Cerutti, F., Cenacchi, G., Izzi, L., Camussi, G. and Forni, M. Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype. PLoS One 6 (2011) 28175. http://dx.doi.org/10.1371/journal.pone.0028175CrossrefGoogle Scholar

  • [34] Moshtagh, P.R., Emami, S.H. and Sharifi, A.M. Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study. J. Physiol. Biochem. 69 (2013) 451–458. http://dx.doi.org/10.1007/s13105-012-0228-1CrossrefWeb of ScienceGoogle Scholar

  • [35] Kadam, S., Muthyala, S., Nair, P. and Bhonde, R. Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes. Rev. Diabet. Stud. 7 (2012) 168–182. http://dx.doi.org/10.1900/RDS.2010.7.168CrossrefGoogle Scholar

  • [36] Talebi, S., Aleyasin, A., Soleimani, M. and Massumi, M. Derivation of islet-like cells from mesenchymal stem cells using PDX1-transducing lentiviruses. Biotechnol. Appl. Biochem. 59 (2012) 205–212. http://dx.doi.org/10.1002/bab.1013CrossrefWeb of ScienceGoogle Scholar

  • [37] Ivey, K.N. and Srivastava, D. MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell. 7 (2010) 36–41. http://dx.doi.org/10.1016/j.stem.2010.06.012Web of ScienceCrossrefGoogle Scholar

  • [38] Yi, R. and Fuchs, E. MicroRNAs and their roles in mammalian stem cells. J. Cell Sci. 124 (2011) 1775–1783. http://dx.doi.org/10.1242/jcs.069104CrossrefWeb of ScienceGoogle Scholar

  • [39] Bravo-Egana, V., Rosero, S., Molano, R.D., Pileggi, A., Ricordi, C., Domínguez-Bendala, J. and Pastori, R.L. Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem. Biophys. Res. Commun. 366 (2008) 922–926. http://dx.doi.org/10.1016/j.bbrc.2007.12.052Google Scholar

  • [40] Lynn, F.C., Skewes-Cox, P., Kosaka, Y., McManus, M.T., Harfe, B.D. and German, M.S. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56 (2007) 2938–2945. http://dx.doi.org/10.2337/db07-0175CrossrefGoogle Scholar

  • [41] Poy, M.N., Hausser, J., Trajkovski, M., Braun, M., Collins, S., Rorsman, P., Zavolan, M. and Stoffel, M. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl. Acad. Sci. USA 106 (2009) 5813–5818. http://dx.doi.org/10.1073/pnas.0810550106CrossrefGoogle Scholar

  • [42] Joglekar, M.V., Joglekar, V.M. and Hardikar, A.A. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr. Patterns 9 (2009) 109–113. http://dx.doi.org/10.1016/j.gep.2008.10.001CrossrefGoogle Scholar

  • [43] Correa-Medina, M., Bravo-Egana, V., Rosero, S., Ricordi, C., Edlund, H., Diez, J. and Pastori, R. L. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr. Patterns 9 (2009) 193–199. http://dx.doi.org/10.1016/j.gep.2008.12.003Web of ScienceGoogle Scholar

  • [44] Murtaugh, L.C. Pancreas and beta-cell development: from the actual to the possible. Development 134 (2007) 427–438. http://dx.doi.org/10.1242/dev.02770Web of ScienceCrossrefGoogle Scholar

  • [45] Oliver-Krasinski, J.M. and Stoffers, D.A. On the origin of the β cell. Genes Dev. 22 (2008) 1998–2021. http://dx.doi.org/10.1101/gad.1670808CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2014-09-12

Published in Print: 2014-09-01

Citation Information: Cellular and Molecular Biology Letters, Volume 19, Issue 3, Pages 483–499, ISSN (Online) 1689-1392, ISSN (Print) 1425-8153, DOI: https://doi.org/10.2478/s11658-014-0207-3.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Shao-Yu Peng, Chien-wen Chou, Yu-Hsuan Kuo, Perng-Chih Shen, and S.W. Steven Shaw
Taiwanese Journal of Obstetrics and Gynecology, 2017, Volume 56, Number 3, Page 306
Andhira Vieira, Noémie Druelle, Fabio Avolio, Tiziana Napolitano, Sergi Navarro-Sanz, Serena Silvano, and Patrick Collombat
Frontiers in Genetics, 2017, Volume 8
Chunyu Bai, Yuhua Gao, Xiangchen Li, Kunfu Wang, Hui Xiong, Zhiqiang Shan, Ping Zhang, Wenjie Wang, Weijun Guan, and Yuehui Ma
Journal of Tissue Engineering and Regenerative Medicine, 2017
Aida Martinez-Sanchez, Guy A. Rutter, and Mathieu Latreille
Frontiers in Genetics, 2017, Volume 7
Maryam Kaviani, Negar Azarpira, Mohammad Hossein Karimi, and Ismail Al-Abdullah
Cell Biology International, 2016, Volume 40, Number 12, Page 1248
Maryam Kaviani and Negar Azarpira
Tissue Engineering and Regenerative Medicine, 2016, Volume 13, Number 5, Page 475
Shuxian Hu, Mingzhi Zhang, Fen Sun, Lipeng Ren, Xin He, Jinlian Hua, and Sha Peng
Cell Proliferation, 2016, Volume 49, Number 3, Page 395
Caroline E. Gargett, Kjiana E. Schwab, and James A. Deane
Human Reproduction Update, 2015, Page dmv051
Stephen R. Filios and Anath Shalev
Diabetes, 2015, Volume 64, Number 11, Page 3631
Adam Nowakowski, Piotr Walczak, Miroslaw Janowski, and Barbara Lukomska
Stem Cells and Development, 2015, Volume 24, Number 19, Page 2219
Experimental and Clinical Transplantation, 2016, Volume 14, Number 5

Comments (0)

Please log in or register to comment.
Log in