Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /

IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

See all formats and pricing
More options …
Volume 19, Issue 4 (Dec 2014)

Regulation of lncRNA expression

Zhuomin Wu / Xiaoxia Liu / Li Liu / Houliang Deng / Jingjing Zhang / Qian Xu / Bohong Cen / Aimin Ji
Published Online: 2014-12-21 | DOI: https://doi.org/10.2478/s11658-014-0212-6


Long non-coding RNAs (lncRNAs) are series of transcripts with important biological functions. Various diseases have been associated with aberrant expression of lncRNAs and the related dysregulation of mRNAs. In this review, we highlight the mechanisms of dynamic lncRNA expression. The chromatin state contributes to the low and specific expression of lncRNAs. The transcription of non-coding RNA genes is regulated by many core transcription factors applied to protein-coding genes. However, specific DNA sequences may allow their unsynchronized transcription with their location-associated mRNAs. Additionally, there are multiple mechanisms involved in the post-transcriptional regulation of lncRNAs. Among these, microRNAs might have indispensible regulatory effects on lncRNAs, based on recent discoveries.

Keywords: lncRNAs; Mechanisms; Dynamic expression; Chromatin state; Transcription factor; Specific DNA sequence; microRNA; Post-transcriptional regulation

  • [1] Yang, F., Zhang, L., Huo, X.S., Yuan, J.H., Xu, D., Yuan, S.X., Zhu, N., Zhou, W.P., Yang, G.S., Wang, Y.Z., Shang, J.L., Gao, C.F., Zhang, F.R., Wang, F. and Sun, S.H. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology 54 (2011) 1679–1689. http://dx.doi.org/10.1002/hep.24563CrossrefGoogle Scholar

  • [2] Zhang, Y., Yang, L. and Chen, L.L. Life without A tail: New formats of long noncoding RNAs. Int. J. Biochem Cell Biol. 2013. DOI: 10.1016/j.biocel.2013.10.009. CrossrefGoogle Scholar

  • [3] Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. and Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445 (2007) 666–670. http://dx.doi.org/10.1038/nature05519CrossrefGoogle Scholar

  • [4] Uhler, J.P., Hertel, C. and Svejstrup, J.Q. A role for noncoding transcription in activation of the yeast PHO5 gene. Proc. Natl. Acad. Sci. USA 104 (2007) 8011–8816. http://dx.doi.org/10.1073/pnas.0702431104CrossrefGoogle Scholar

  • [5] Martens, J.A., Laprade, L. and Winston, F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429 (2004) 571–574. http://dx.doi.org/10.1038/nature02538CrossrefGoogle Scholar

  • [6] Rinn, J.L., Kertesz, M, Wang, J.K., Squazzo, S.L., Xu, X, Brugmann, S.A., Goodnough, L.H., Helms, J.A., Farnham, P.J., Segal, E. and Chang, H.Y. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 129 (2007) 1311–1323. http://dx.doi.org/10.1016/j.cell.2007.05.022CrossrefGoogle Scholar

  • [7] Sleutels, F., Zwart, R. and Barlow, D.P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415 (2002) 810–813. http://dx.doi.org/10.1038/415810aCrossrefGoogle Scholar

  • [8] Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. and Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445 (2007) 666–670. http://dx.doi.org/10.1038/nature05519CrossrefGoogle Scholar

  • [9] Yang, F., Zhang, L., Huo, X.S., Yuan, J.H., Xu, D., Yuan, S.X., Zhu, N., Zhou, W.P., Yang, G.S., Wang, Y.Z., Shang, J.L., Gao, C.F., Zhang, F.R., Wang, F. and Sun, S.H. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology 54 (2011) 1679–1689. http://dx.doi.org/10.1002/hep.24563CrossrefGoogle Scholar

  • [10] Wan, G., Hu, X., Liu, Y., Han, C., Sood, A.K., Calin, G.A., Zhang, X. and Lu, X. A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J. 32 (2013) 2833–2847. http://dx.doi.org/10.1038/emboj.2013.221CrossrefGoogle Scholar

  • [11] Gao, L., Mai, A., Li, X., Lai, Y., Zheng, J., Yang, Q., Wu, J., Nan, A., Ye, S. and Jiang, Y. LncRNA-DQ786227-mediated cell malignant transformation induced by benzo(a)pyrene. Toxicol Lett. 223 (2013) 205–210. http://dx.doi.org/10.1016/j.toxlet.2013.09.015CrossrefGoogle Scholar

  • [12] Song, G., Shen, Y., Zhu, J., Liu, H., Liu, M., Shen, Y.Q., Zhu, S., Kong, X., Yu, Z. and Qian, L. Integrated analysis of dysregulated lncRNA expression in fetal cardiac tissues with ventricular septal defect. PLoS One 8 (2013) e77492. http://dx.doi.org/10.1371/journal.pone.0077492CrossrefGoogle Scholar

  • [13] Sui, W., Lin, H., Peng, W., Huang, Y., Chen, J., Zhang, Y. and Dai, Y. Molecular dysfunctions in acute rejection after renal transplantation revealed by integrated analysis of transcription factor, microRNA and long noncoding RNA. Genomics 102 (2013) 310–322. http://dx.doi.org/10.1016/j.ygeno.2013.05.002CrossrefGoogle Scholar

  • [14] Ravasi, T., Suzuki, H., Pang, K.C., Katayama, S., Furuno, M., Okunishi, R., Fukuda, S., Ru, K., Frith, M.C., Gongora, M.M., Grimmond, S.M., Hume, D.A., Hayashizaki, Y. and Mattick, J.S. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res. 16 (2006) 11–19. http://dx.doi.org/10.1101/gr.4200206CrossrefGoogle Scholar

  • [15] Hansen, T.B., Wiklund, E.D., Bramsen, J.B., Villadsen, S.B., Statham, A.L., Clark, S.J. and Kjems, J. miRNA-dependent gene silencing involving Ago2- mediated cleavage of a circular antisense RNA. EMBO J. 30 (2011) 4414–4422. http://dx.doi.org/10.1038/emboj.2011.359CrossrefGoogle Scholar

  • [16] Yang, H., Zhong, Y., Xie, H., Lai, X., Xu, M., Nie, Y., Liu, S. and Wan, Y.J. Induction of the liver cancer-down-regulated long noncoding RNA uc002mbe.2 mediates trichostatin-induced apoptosis of liver cancer cells. Biochem Pharmacol. 85 (2013) 1761–1769. http://dx.doi.org/10.1016/j.bcp.2013.04.020CrossrefGoogle Scholar

  • [17] Yang, F., Huo, X.S., Yuan, S.X., Zhang, L., Zhou, W.P., Wang, F. and Sun, S.H. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol. Cell. 49 (2013) 1083–1096. http://dx.doi.org/10.1016/j.molcel.2013.01.010CrossrefGoogle Scholar

  • [18] Cawley, S., Bekiranov, S., Ng, H.H., Kapranov, P., Sekinger, E.A., Kampa, D., Piccolboni, A., Sementchenko, V., Cheng, J., Williams, A.J., Wheeler, R., Wong, B., Drenkow, J., Yamanaka, M., Patel, S., Brubaker, S., Tammana, H., Helt, G., Struhl, K. and Gingeras, T.R. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116 (2004) 499–509. http://dx.doi.org/10.1016/S0092-8674(04)00127-8CrossrefGoogle Scholar

  • [19] Clark, M.B., Johnston, R.L., Inostroza-Ponta, M., Fox, A.H., Fortini, E., Moscato, P., Dinger, M.E. and Mattick, J.S. Genome-wide analysis of long noncoding RNA stability. Genome Res. 22 (2012) 885–898. http://dx.doi.org/10.1101/gr.131037.111CrossrefGoogle Scholar

  • [20] Diederichs, S. The four dimensions of noncoding RNA conservation. Trends Genet. 30 (2014) 121–123. http://dx.doi.org/10.1016/j.tig.2014.01.004CrossrefGoogle Scholar

  • [21] Plath, K., Mlynarczyk-Evans, S, Nusinow, D.A. and Panning, B. Xist RNA and the mechanism of X chromosome inactivation. Annu. Rev. Genet. 36 (2002) 233–278. http://dx.doi.org/10.1146/annurev.genet.36.042902.092433CrossrefGoogle Scholar

  • [22] Guttman, M., Amit, I., Garber, M., French, C., Lin, M.F., Feldser, D., Huarte, M., Zuk, O., Carey, B.W., Cassady, J.P., Cabili, M.N., Jaenisch, R., Mikkelsen, T.S., Jacks, T., Hacohen, N., Bernstein, B.E., Kellis, M., Regev, A., Rinn, J.L. and Lander, E.S. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458 (2009) 223–227. http://dx.doi.org/10.1038/nature07672CrossrefGoogle Scholar

  • [23] Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Martin, D., Merkel, A., Knowles, D.G., Lagarde, J., Veeravalli, L., Ruan, X., Ruan, Y., Lassmann, T., Carninci, P., Brown, J.B., Lipovich, L., Gonzalez, J.M., Thomas, M., Davis, C.A., Shiekhattar, R., Gingeras, T.R., Hubbard, T.J., Notredame, C., Harrow, J. and Guigó, R. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22 (2012) 1775–1789. http://dx.doi.org/10.1101/gr.132159.111CrossrefGoogle Scholar

  • [24] Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M.C., Maeda, N, Oyama, R., Ravasi, T., Lenhard, B., Wells, C., Kodzius, R., Shimokawa, K., Bajic, V.B., Brenner, S.E., Batalov, S., Forrest, A.R., Zavolan, M., Davis, M.J., Wilming, L.G., Aidinis, V., Allen, J.E., Ambesi-Impiombato, A., Apweiler, R., Aturaliya, R.N., Bailey, T.L., Bansal, M., Baxter, L., Beisel, K.W., Bersano, T., Bono, H., Chalk, A.M., Chiu, K.P., Choudhary, V., Christoffels, A., Clutterbuck, D.R., Crowe, M.L., Dalla, E., Dalrymple, B.P., de Bono, B., Della Gatta, G., di Bernardo, D., Down, T., Engstrom, P., Fagiolini, M., Faulkner, G., Fletcher, C.F., Fukushima, T., Furuno, M., Futaki, S., Gariboldi, M., Georgii-Hemming, P., Gingeras, T.R., Gojobori, T., Green, R.E., Gustincich, S., Harbers, M., Hayashi, Y., Hensch, T.K., Hirokawa, N., Hill, D., Huminiecki, L., Iacono, M., Ikeo, K., Iwama, A., Ishikawa, T., Jakt, M., Kanapin, A., Katoh, M., Kawasawa, Y., Kelso, J., Kitamura, H., Kitano, H., Kollias, G., Krishnan, S.P., Kruger, A., Kummerfeld, S.K., Kurochkin, I.V., Lareau, L.F., Lazarevic, D., Lipovich, L., Liu, J., Liuni, S., McWilliam, S., Madan Babu, M., Madera, M., Marchionni, L., Matsuda, H., Matsuzawa, S., Miki, H., Mignone, F., Miyake, S., Morris, K., Mottagui-Tabar, S., Mulder, N., Nakano, N., Nakauchi, H., Ng, P., Nilsson, R., Nishiguchi, S., Nishikawa, S., Nori, F., Ohara, O., Okazaki, Y., Orlando, V., Pang, K.C., Pavan, W.J., Pavesi, G., Pesole, G., Petrovsky, N., Piazza, S., Reed, J., Reid, J.F., Ring, B.Z., Ringwald, M., Rost, B., Ruan, Y., Salzberg, S.L., Sandelin, A., Schneider, C., Schönbach, C., Sekiguchi, K., Semple, C.A., Seno, S., Sessa, L., Sheng, Y., Shibata, Y., Shimada, H., Shimada, K., Silva, D., Sinclair, B., Sperling, S., Stupka, E., Sugiura, K, Sultana, R., Takenaka, Y., Taki, K., Tammoja, K., Tan, S.L., Tang, S., Taylor, M.S., Tegner, J., Teichmann, S.A., Ueda, H.R., van Nimwegen, E., Verardo, R., Wei, C.L., Yagi, K., Yamanishi, H., Zabarovsky, E., Zhu, S., Zimmer, A., Hide, W., Bult, C., Grimmond, S.M., Teasdale, R.D., Liu, E.T., Brusic, V., Quackenbush, J., Wahlestedt, C., Mattick, J.S., Hume, D.A., Kai, C., Sasaki, D., Tomaru, Y., Fukuda, S., Kanamori-Katayama, M., Suzuki, M., Aoki, J., Arakawa, T., Iida, J., Imamura, K., Itoh, M., Kato, T., Kawaji, H., Kawagashira, N., Kawashima, T., Kojima, M., Kondo, S., Konno, H., Nakano, K., Ninomiya, N., Nishio, T., Okada, M., Plessy, C., Shibata, K., Shiraki, T., Suzuki, S., Tagami, M., Waki, K., Watahiki, A., Okamura-Oho, Y., Suzuki, H., Kawai, J., Hayashizaki, Y.; FANTOM Consortium; RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group). The transcriptional landscape of the mammalian genome. Science 309 (2005) 1559–1563. http://dx.doi.org/10.1126/science.1112014CrossrefGoogle Scholar

  • [25] Mohammad, F., Pandey, G.K., Mondal. T., Enroth, S., Redrup, L., Gyllensten, U. and Kanduri, C. Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development 139 (2012) 2792–2803. http://dx.doi.org/10.1242/dev.079566CrossrefGoogle Scholar

  • [26] Chen, Z.J. and Pikaard, C.S. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev. 11 (1997) 2124–2136. http://dx.doi.org/10.1101/gad.11.16.2124CrossrefGoogle Scholar

  • [27] Selker, E.U. Trichostatin A causes selective loss of DNA methylation in Neurospora. Proc. Natl. Acad. Sci. USA 95 (1998) 9430–9435. http://dx.doi.org/10.1073/pnas.95.16.9430CrossrefGoogle Scholar

  • [28] Braconi, C., Kogure, T., Valeri, N., Huang, N., Nuovo, G., Costinean, S., Negrini, M., Miotto, E., Croce, C.M. and Patel, T. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 30 (2011) 4750–4756. http://dx.doi.org/10.1038/onc.2011.193Google Scholar

  • [29] Amort, T., Soulière, M.F., Wille, A., Jia, X.Y., Fiegl, H., Wörle, H., Micura, R. and Lusser, A. Long non-coding RNAs as targets for cytosine methylation. RNA Biol. 10 (2013) 1003–1008. http://dx.doi.org/10.4161/rna.24454CrossrefGoogle Scholar

  • [30] Yang, H., Zhong, Y., Xie, H., Lai, X., Xu, M., Nie, Y., Liu, S. and Wan, Y.J. Induction of the liver cancer-down-regulated long noncoding RNA uc002mbe.2 mediates trichostatin-induced apoptosis of liver cancer cells. Biochem Pharmacol. 85 (2013) 1761–1769. http://dx.doi.org/10.1016/j.bcp.2013.04.020CrossrefGoogle Scholar

  • [31] Saxonov, S., Berg, P. and Brutlag, D.L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. USA 103 (2006) 1412–1417. http://dx.doi.org/10.1073/pnas.0510310103CrossrefGoogle Scholar

  • [32] Elango, N. and Yi, S.V. DNA methylation and structural and functional bimodality of vertebrate promoters. Mol. Biol. Evol. 25 (2008) 1602–1608. http://dx.doi.org/10.1093/molbev/msn110CrossrefGoogle Scholar

  • [33] Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., Lee, W., Mendenhall, E., O’Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E.S. and Bernstein, B.E. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448 (2007) 553–560. http://dx.doi.org/10.1038/nature06008CrossrefGoogle Scholar

  • [34] Dinger, M.E., Amaral, P.P., Mercer, T.R., Pang, K.C., Bruce, S.J., Gardiner, B.B., Askarian-Amiri, M.E., Ru, K., Soldà, G., Simons, C., Sunkin, S.M., Crowe, M.L., Grimmond, S.M., Perkins, A.C. and Mattick, J.S. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 18 (2008) 1433–1445. http://dx.doi.org/10.1101/gr.078378.108CrossrefGoogle Scholar

  • [35] Khalil, A.M., Guttman, M., Huarte, M., Garber, M., Raj, A., Rivea Morales, D., Thomas, K., Presser, A., Bernstein, B.E., van, Oudenaarden, A., Regev, A., Lander, E.S. and Rinn, J.L. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA 106 (2009) 11667–11672. http://dx.doi.org/10.1073/pnas.0904715106CrossrefGoogle Scholar

  • [36] Dharap, A., Nakka, V.P., and Vemuganti, R. Effect of focal ischemia on long noncoding RNAs. Stroke 43 (2012) 2800–2802. http://dx.doi.org/10.1161/STROKEAHA.112.669465CrossrefGoogle Scholar

  • [37] Uesaka, M., Nishimura, O., Go, Y., Nakashima, K., Agata, K., Imamura, T. Bidirectional promoters are the major source of gene activation-associated non-coding RNAs in mammals. BMC Genomics 15 (2014). DOI: 10.1186/1471-2164-15-35. CrossrefGoogle Scholar

  • [38] Engstrom, P.G., Suzuki, H., Ninomiya, N., Akalin, A., Sessa, L., Lavorgna, G., Brozzi, A., Luzi, L., Tan, S.L., Yang, L., Kunarso, G., Ng, E.L., Batalov, S., Wahlestedt, C., Kai, C., Kawai, J., Carninci, P., Hayashizaki, Y., Wells, C., Bajic, V.B., Orlando, V., Reid, J.F., Lenhard, B., Lipovich, L. Complex Loci in human and mouse genomes. PLoS Genet. 2 (2006) e47. http://dx.doi.org/10.1371/journal.pgen.0020047CrossrefGoogle Scholar

  • [39] Wang, Y., Pang, W.J., Wei, N., Xiong, Y., Wu, W.J., Zhao, C.Z., Shen, Q.W. and Yang, G.S. Identification, stability and expression of Sirt1 antisense long non-coding RNA. Gene 539 (2014) 117–124. http://dx.doi.org/10.1016/j.gene.2014.01.037CrossrefGoogle Scholar

  • [40] Yoon, J.H., Abdelmohsen, K. and Gorospe, M. Posttranscriptional gene regulation by long noncoding RNA. J. Mol. Biol. 425 (2013) 3723–3730. http://dx.doi.org/10.1016/j.jmb.2012.11.024CrossrefGoogle Scholar

  • [41] Wilusz, J.E., JnBaptiste, C.K., Lu, L.Y., Kuhn, C.D., Joshua-Tor, L. and Sharp, P.A. A triple helix stabilizes the 3’ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev. 26 (2012) 2392–2407. http://dx.doi.org/10.1101/gad.204438.112CrossrefGoogle Scholar

  • [42] Brown, J.A., Valenstein, M.L., Yario, T.A., Tycowski, K.T. and Steitz, J.A. Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβnoncoding RNAs. Proc. Natl. Acad. Sci. USA 109 (2012) 19202–19207. http://dx.doi.org/10.1073/pnas.1217338109CrossrefGoogle Scholar

  • [43] Yoon, J.H., Abdelmohsen, K., Srikantan, S., Yang, X., Martindale, J.L., De, S., Huarte, M., Zhan, M., Becker, K.G. and Gorospe, M. LincRNA-p21 suppresses target mRNA translation. Mol. Cell. 47 (2012) 648–655. http://dx.doi.org/10.1016/j.molcel.2012.06.027CrossrefGoogle Scholar

  • [44] Jalali, S., Bhartiya, D., Lalwani, M.K., Sivasubbu, S. and Scaria, V. Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One 8 (2013) e53823. http://dx.doi.org/10.1371/journal.pone.0053823CrossrefGoogle Scholar

  • [45] Chiyomaru, T., Fukuhara, S., Saini, S., Majid, S., Deng, G., Shahryary, V., Chang, I., Tanaka, Y., Enokida, H., Nakagawa, M., Dahiya, R. and Yamamura, S. Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells. J. Biol. Chem. 18 (2014) 12550–12565. http://dx.doi.org/10.1074/jbc.M113.488593CrossrefGoogle Scholar

  • [46] Yoon, J.H., Abdelmohsen K., Kim J., Yang X., Martindale J.L., Tominaga-Yamanaka K., White E.J., Orjalo A.V., Rinn J.L., Kreft S.G., Wilson G.M. and Gorospe M. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat. Commun. 2013. DOI: 10.1038/ncomms3939. CrossrefGoogle Scholar

  • [47] Han, Y., Liu, Y., Zhang, H., Wang, T., Diao, R., Jiang, Z., Gui, Y. and Cai, Z. Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long noncoding RNA MALAT1. FEBS Lett. 587 (2013) 3875–3882. http://dx.doi.org/10.1016/j.febslet.2013.10.023CrossrefGoogle Scholar

  • [48] Huang, J., Zhou, N., Watabe, K., Lu, Z., Wu, F., Xu, M. and Mo, Y.Y. Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis. 5 (2014) e1008. http://dx.doi.org/10.1038/cddis.2013.541CrossrefGoogle Scholar

  • [49] Mercer, T.R. and Mattick, J.S. Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 20 (2013) 300–307. http://dx.doi.org/10.1038/nsmb.2480CrossrefGoogle Scholar

  • [50] Yang, Y., Zhou, X. and Jin, Y. ADAR-mediated RNA editing in non-coding RNA sequences. Sci. China Life Sci. 56 (2013) 944–952. http://dx.doi.org/10.1007/s11427-013-4546-5CrossrefGoogle Scholar

  • [51] Cantara, W.A., Crain, P.F., Rozenski, J., McCloskey, J.A., Harris, K.A., Zhang, X., Vendeix, F.A., Fabris, D. and Agris, P.F. The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res. 39 (2011)(Database issue) D195–201. http://dx.doi.org/10.1093/nar/gkq1028CrossrefGoogle Scholar

  • [52] Wang, J., Liu, X., Wu, H., Ni, P., Gu, Z., Qiao, Y., Chen, N., Sun, F. and Fan, Q. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 38 (2010) 5366–5383. http://dx.doi.org/10.1093/nar/gkq285CrossrefGoogle Scholar

  • [53] Leucci, E., Patella, F., Waage, J., Holmstrøm, K., Lindow, M., Porse, B., Kauppinen, S. and Lund, A.H. microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci. Rep. 3 (2013). DOI: 10.1038/srep02535. CrossrefGoogle Scholar

  • [54] Chiyomaru, T., Yamamura, S., Fukuhara, S., Yoshino, H., Kinoshita, T., Majid, S., Saini, S., Chang, I., Tanaka, Y., Enokida, H., Seki, N., Nakagawa, M. and Dahiya, R. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One 8 (2013) e70372. http://dx.doi.org/10.1371/journal.pone.0070372CrossrefGoogle Scholar

About the article

Published Online: 2014-12-21

Published in Print: 2014-12-01

Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, ISSN (Print) 1425-8153, DOI: https://doi.org/10.2478/s11658-014-0212-6.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Simona Greco, Antonio Salgado Somoza, Yvan Devaux, and Fabio Martelli
Antioxidants & Redox Signaling, 2017
Fujun Yu, Jianjian Zheng, Yuqing Mao, Peihong Dong, Zhongqiu Lu, Guojun Li, Chuanyong Guo, Zhanju Liu, and Xiaoming Fan
Journal of Biological Chemistry, 2015, Volume 290, Number 47, Page 28286
Qiyuan Wang, Wanchun Wang, Fan Zhang, Youwen Deng, and Zeling Long
Journal of Cellular Biochemistry, 2017
Wei Wei, Yu Liu, Yebin Lu, Bo Yang, and Ling Tang
Journal of Cellular Biochemistry, 2017, Volume 118, Number 10, Page 3349
Nanhui Yu, Ying Liang, Hong Zhu, Hongying Mo, and Haiping Pei
Journal of Cellular Biochemistry, 2017, Volume 118, Number 8, Page 2208
Zongze He, Yujue Wang, Guangfu Huang, Qi Wang, Dongdong Zhao, and Longyi Chen
Archives of Biochemistry and Biophysics, 2017, Volume 623-624, Page 1
Zhuomin Wu, Ping Wu, Xialin Zuo, Na Yu, Yixin Qin, Qian Xu, Shuai He, Bohong Cen, Wenjie Liao, and Aimin Ji
Molecular Neurobiology, 2016
Haiting Zhao, Renjun Peng, Qing Liu, Dingyang Liu, Peng Du, Jian Yuan, Gang Peng, and Yiwei Liao
Archives of Biochemistry and Biophysics, 2016, Volume 610, Page 1
Yongjun Tang, Ruoxi He, Jian An, Pengbo Deng, Li Huang, and Wei Yang
Biochemical and Biophysical Research Communications, 2016, Volume 479, Number 3, Page 417
Ming-Ming Wei and Guang-Biao Zhou
Genomics, Proteomics & Bioinformatics, 2016, Volume 14, Number 5, Page 280
Mounia Boulberdaa, Elizabeth Scott, Margaret Ballantyne, Raquel Garcia, Betty Descamps, Gianni D Angelini, Mairi Brittan, Amanda Hunter, Martin McBride, John McClure, Joseph M Miano, Costanza Emanueli, Nicholas L Mills, Joanne C Mountford, and Andrew H Baker
Molecular Therapy, 2016, Volume 24, Number 5, Page 978
Oncology Reports, 2015, Volume 34, Number 5, Page 2403
Dan Qin and Cunshuan Xu
Cellular and Molecular Biology Letters, 2015, Volume 20, Number 2

Comments (0)

Please log in or register to comment.
Log in