Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 19, Issue 4

FunPred-1: Protein function prediction from a protein interaction network using neighborhood analysis

Sovan Saha / Piyali Chatterjee / Subhadip Basu / Mahantapas Kundu / Mita Nasipuri
Published Online: 2014-12-21 | DOI: https://doi.org/10.2478/s11658-014-0221-5

Abstract

Proteins are responsible for all biological activities in living organisms. Thanks to genome sequencing projects, large amounts of DNA and protein sequence data are now available, but the biological functions of many proteins are still not annotated in most cases. The unknown function of such non-annotated proteins may be inferred or deduced from their neighbors in a protein interaction network. In this paper, we propose two new methods to predict protein functions based on network neighborhood properties. FunPred 1.1 uses a combination of three simple-yet-effective scoring techniques: the neighborhood ratio, the protein path connectivity and the relative functional similarity. FunPred 1.2 applies a heuristic approach using the edge clustering coefficient to reduce the search space by identifying densely connected neighborhood regions. The overall accuracy achieved in FunPred 1.2 over 8 functional groups involving hetero-interactions in 650 yeast proteins is around 87%, which is higher than the accuracy with FunPred 1.1. It is also higher than the accuracy of many of the state-of-the-art protein function prediction methods described in the literature. The test datasets and the complete source code of the developed software are now freely available at http://code.google.com/p/cmaterbioinfo/.

Keywords: Protein interaction network; Protein function prediction; Functional groups; Neighborhood analysis; Relative functional similarity; Edge clustering coefficient

  • [1] Schwikowski, B., Uetz, P. and Fields, S. A network of protein-protein interactions in yeast. Nat. Biotechnol. 18 (2000) 1257–1261. http://dx.doi.org/10.1038/82360CrossrefGoogle Scholar

  • [2] Hishigaki, H., Nakai, K., Ono, T., Tanigami, A. and Takagi, T. Assessment of prediction accuracy of protein function from protein-protein interaction data. Yeast (Chichester, England) 18 (2001) 523–531. http://dx.doi.org/10.1002/yea.706CrossrefGoogle Scholar

  • [3] Chen, J., Hsu, W., Lee, M.L. and Ng. S.K. Labeling network motifs in protein interactomes for protein function prediction. IEEE 23rd International Conference on Data Engineering (2007) 546–555. Google Scholar

  • [4] Vazquez, A., Flammini, A., Maritan, A. and Vespignani, A. Global protein function prediction from protein-protein interaction networks. Nat. Biotechnol. 21 (2003) 697–700. http://dx.doi.org/10.1038/nbt825CrossrefGoogle Scholar

  • [5] Karaoz, U., Murali, T.M., Letovsky, S., Zheng, Y., Ding, C., Cantor, C.R. and Kasif, S. Whole-genome annotation by using evidence integration in functional-linkage networks. Proc. Natl. Acad. Sci. USA 101 (2004) 2888–2893. http://dx.doi.org/10.1073/pnas.0307326101CrossrefGoogle Scholar

  • [6] Nabieva, E., Jim, K., Agarwal, A., Chazelle, B. and Singh, M. Wholeproteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21 (2005) i302–i310. http://dx.doi.org/10.1093/bioinformatics/bti1054CrossrefGoogle Scholar

  • [7] Deng, M., Mehta, S., Sun, F. and Chen, T. Inferring domain-domain interactions from protein-protein interactions. Genome Res. (2002) 1540–1548. CrossrefGoogle Scholar

  • [8] Letovsky, S. and Kasif, S. Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19 (2003) i197–i204. http://dx.doi.org/10.1093/bioinformatics/btg1026CrossrefGoogle Scholar

  • [9] Wu, D.D. An efficient approach to detect a protein community from a seed. Proc. IEEE Symp. Comput. Intel. Bioinforma. Comput. Biol. (2005) 1–7. Google Scholar

  • [10] Samanta, M.P. and Liang, S. Predicting protein functions from redundancies in large-scale protein interaction networks. Proc. Natl. Acad. Sci. USA 100 (2003) 12579–12583. http://dx.doi.org/10.1073/pnas.2132527100CrossrefGoogle Scholar

  • [11] Arnau, V., Mars, S. and Marín, I. Iterative cluster analysis of protein interaction data. Bioinformatics 21 (2005) 364–378. http://dx.doi.org/10.1093/bioinformatics/bti021CrossrefGoogle Scholar

  • [12] Bader, G.D. and Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 27 (2003) 1–27. Google Scholar

  • [13] Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K. and Kanaya, S. Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics 7 (2006) DOI: 10.1186/1471-2105-7-207. CrossrefGoogle Scholar

  • [14] Spirin, V. and Mirny, L.A. Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. USA 100 (2003) 12123–12128. http://dx.doi.org/10.1073/pnas.2032324100CrossrefGoogle Scholar

  • [15] King, A.D., Przulj, N. and Jurisica, I. Protein complex prediction via costbased clustering. Bioinformatics 20 (2004) 3013–3020. http://dx.doi.org/10.1093/bioinformatics/bth351CrossrefGoogle Scholar

  • [16] Asthana, S., King, O.D., Gibbons, F.D. and Roth, F.P. Predicting protein complex membership using probabilistic network reliability. Genome Res. 14 (2004) 1170–1175. http://dx.doi.org/10.1101/gr.2203804CrossrefGoogle Scholar

  • [17] Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N., Tikuisis, A.P., Punna, T., Peregrín-Alvarez, J. M., Shales, M., Zhang, X., Davey, M., Robinson, M.D., Paccanaro, A., Bray, J.E., Sheung, A., Beattie, B., Richards, D.P., Canadien, V., Lalev, A., Mena, F., Wong, P., Starostine, A., Canete, M.M., Vlasblom, J. Wu, S., Orsi, C., Collins, S.R., Chandran, S., Haw, R., Rilstone, J.J., Gandi, K., Thompson, N.J., Musso, G., St Onge, P., Ghanny, S., Lam, M.H.Y., Butland, G., Altaf-Ul, A.M., Kanaya, S., Shilatifard, A., O’Shea, E., Weissman, J.S., Ingles, C.J., Hughes, T.R., Parkinson, J., Gerstein, M., Wodak, S.J., Emili, A. and Greenblatt, J.F. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440 (2006) 637–643. http://dx.doi.org/10.1038/nature04670CrossrefGoogle Scholar

  • [18] Wang, H., Huang, H., Ding, C. and Nie, F. Predicting protein-protein interactions from multimodal biological data sources via nonnegative matrix tri-factorization. J. Comput. Biol. 20 (2013) 344–358. http://dx.doi.org/10.1089/cmb.2012.0273CrossrefWeb of ScienceGoogle Scholar

  • [19] Chatterjee, P., Basu, S., Kundu, M., Nasipuri, M. and Plewczynski, D. PPI_SVM: prediction of protein-protein interactions using machine learning, domain-domain affinities and frequency tables. Cell. Mol. Biol. Lett. 16 (2011) 264–278. http://dx.doi.org/10.2478/s11658-011-0008-xWeb of ScienceCrossrefGoogle Scholar

  • [20] Wu, X., Zhu, L., Guo, J., Zhang, D.Y. and Lin, K. Prediction of yeast protein-protein interaction network: insights from the Gene Ontology and annotations. Nucleic Acids Res. 34 (2006) 2137–2150. http://dx.doi.org/10.1093/nar/gkl219CrossrefGoogle Scholar

  • [21] Moosavi, S., Rahgozar, M. and Rahimi, A. Protein function prediction using neighbor relativity in protein-protein interaction network. Comput. Biol. Chem. 43 (2013) DOI: 10.1016/j.compbiolchem.2012.12.003. CrossrefWeb of ScienceGoogle Scholar

  • [22] Peng, W., Wang, J., Wang, W., Liu, Q., Wu, F.X. and Pan, Y. Iteration method for predicting essential proteins based on orthology and proteinprotein interaction networks. BMC Syst. Biol. 6 (2012) DOI: 10.1186/1752-0509-6-87. CrossrefWeb of ScienceGoogle Scholar

  • [23] Chua, H.N., Sung, W.K. and Wong, L. Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22 (2006) 1623–1630. http://dx.doi.org/10.1093/bioinformatics/btl145CrossrefWeb of ScienceGoogle Scholar

  • [24] Chatterjee, P., Basu, S., Kundu, M., Nasipuri, M., and Plewczynski, D. PSP_MCSVM: brainstorming consensus prediction of protein secondary structures using two-stage multiclass support vector machines. J. Mol. Model. 17 (2011) 2191–2201. http://dx.doi.org/10.1007/s00894-011-1102-8CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2014-12-21

Published in Print: 2014-12-01


Citation Information: Cellular and Molecular Biology Letters, Volume 19, Issue 4, Pages 675–691, ISSN (Online) 1689-1392, ISSN (Print) 1425-8153, DOI: https://doi.org/10.2478/s11658-014-0221-5.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Pengping Li, Yuebing Hu, Jiao Yi, Jie Li, Jie Yang, and Jin Wang
Journal of Translational Medicine, 2015, Volume 13, Number 1

Comments (0)

Please log in or register to comment.
Log in