Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 20, Issue 4

Issues

Elevated pressure enhanced TRAIL-induced apoptosis in hepatocellular carcinoma cells via ERK1/2-inactivation

Eunyoung Hong
  • Department of Preventive Medicine, School of Medicine, Korea University, Seoul, Korea
  • Department of Public Health, Graduate School of Medicine, Korea University, Seoul, Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eunil Lee
  • Corresponding author
  • Department of Preventive Medicine, School of Medicine, Korea University, Seoul, Korea
  • Department of Public Health, Graduate School of Medicine, Korea University, Seoul, Korea
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joonhee Kim / Daeho Kwon
  • Department of Microbiology, College of Medicine, Catholic Kwandong University, Gangneung, Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yongchul Lim
  • Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-15 | DOI: https://doi.org/10.1515/cmble-2015-0030

Abstract

The high frequency of intrinsic resistance to TNF-related apoptosisinducing ligand (TRAIL) in tumor cell lines has necessitated the development of strategies to sensitize tumors to TRAIL-induced apoptosis. We previously showed that elevated pressure applied as a mechanical stressor enhanced TRAIL-mediated apoptosis in human lung carcinoma cells in vitro and in vivo. This study focused on the effect of elevated pressure on the sensitization of TRAIL-resistant cells and the underlying mechanism. We observed elevated pressure-induced sensitization to TRAIL-mediated apoptosis in Hep3B cells, accompanied by the activation of several caspases and the mitochondrial signaling pathway. Interestingly, the enhanced apoptosis induced by elevated pressure was correlated with suppression of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) phosphorylation and CREB without any change to other MAPKs. Phosphorylation of Bcl-2-associated death promoter (BAD) also decreased, leading to inhibition of the mitochondrial pathway. To confirm whether the activation of pERK1/2 plays a key role in the TRAIL-sensitizing effect of elevated pressure, Hep3B cells were pre-treated with the ERK1/2-specific inhibitor PD98059 instead of elevated pressure. Co-treatment with PD98059 and TRAIL augmented TRAIL-induced apoptosis and decreased BAD phosphorylation. The inhibition of ERK1/2 activation by elevated pressure and PD98059 also reduced BH3 interacting-domain death agonist (BID), thereby amplifying apoptotic stress at the mitochondrial level. Our results suggest that elevated pressure enhances TRAIL-induced apoptosis of Hep3B cells via specific suppression of ERK1/2 activation among MAPKs.

This article offers supplementary material which is provided at the end of the article.

Keywords : TRAIL; Elevated pressure; Mechanical stress; ERK1/2; Hepatocellular carcinoma; Apoptosis; BAD; CREB

References

  • 1. Ashkenazi, A., Pai, R.C., Fong, S., Leung, S., Lawrence, D.A., Marsters, S.A., Blackie, C., Chang, L., McMurtrey, A.E., Hebert, A., DeForge, L., Koumenis, I.L., Lewis, D., Harris, L., Bussiere, J., Koeppen, H., Shahrokh, Z. and Schwall, R.H. Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104 (1999) 155-216.CrossrefGoogle Scholar

  • 2. Walczak, H., Miller, R.E., Ariail, K., Gliniak, B., Griffith, T.S., Kubin, M., Chin, W., Jones, J., Woodward, A., Le, T., Smith, C., Smolak, P., Goodwin, R.G., Rauch, C.T., Schuh, J.C. and Lynch, D.H. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med. 5 (1999) 157-219.Google Scholar

  • 3. Plummer, R., Attard, G., Pacey, S., Li, L., Razak, A., Perrett, R., Barrett, M., Judson, I., Kaye, S., Fox, N.L., Halpern, W., Corey, A., Calvert, H. and de Bono, J. Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers. Clin. Cancer Res. 13 (2007) 6187-6280.CrossrefGoogle Scholar

  • 4. Trarbach, T., Moehler, M., Heinemann, V., Kohne, C.H., Przyborek, M., Schulz, C., Sneller, V., Gallant, G. and Kanzler, S. Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br. J. Cancer 102 (2010) 506-517.Google Scholar

  • 5. Greco, F.A., Bonomi, P., Crawford, J., Kelly, K., Oh, Y., Halpern, W., Lo, L., Gallant, G. and Klein, J. Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the RAIL receptor-1, in patients with advanced non-small cell lung cancer. Lung Cancer 61 (2008) 82-171.Web of ScienceGoogle Scholar

  • 6. Hwang, M.K., Ryu, B.J. and Kim, S.H. AW00179 potentiates TRAILmediated death of human lung cancer H1299 cells through ROS-JNK-c-Junmediated upregulation of DR5 and downregulation of anti-apoptotic molecules. Amino Acids 43 (2012) 1679-1765.Google Scholar

  • 7. Hellwig, C.T. and Rehm, M. TRAIL signaling and synergy mechanisms used in TRAIL-based combination therapies. Mol. Cancer Ther. 11 (2012) 3-15.CrossrefGoogle Scholar

  • 8. Oh, S., Kim, Y., Kim, J., Kwon, D. and Lee, E. Elevated pressure, a novel cancer therapeutic tool for sensitizing cisplatin-mediated apoptosis in A549. Biochem. Biophys. Res. Commun. 399 (2010) 91-97.Web of ScienceGoogle Scholar

  • 9. Oh, S., Kwon, D., Lee, H.J., Kim, J. and Lee, E. Role of elevated pressure in TRAIL-induced apoptosis in human lung carcinoma cells. Apoptosis 15 (2010) 1517-1544.CrossrefWeb of ScienceGoogle Scholar

  • 10. Oh, S., Lee, E., Lee, J., Lim, Y., Kim, J. and Woo, S. Comparison of the effects of 40% oxygen and two atmospheric absolute air pressure conditions on stress-induced premature senescence of normal human diploid fibroblasts. Cell Stress Chaperones 13 (2008) 447-504.Web of ScienceCrossrefGoogle Scholar

  • 11. Rubin, J., Murphy, T.C., Fan, X., Goldschmidt, M. and Taylor, W.R. Activation of extracellular signal-regulated kinase is involved in mechanical strain inhibition of RANKL expression in bone stromal cells. J. Bone Miner. Res. 17 (2002) 1452-1511.CrossrefGoogle Scholar

  • 12. Clark, E.A. and Brugge, J.S. Integrins and signal transduction pathways: the road taken. Science 268 (1995) 233-241.Google Scholar

  • 13. Giancotti, F.G. and Ruoslahti, E. Integrin signaling. Science 285 (1999) 1028-1059.CrossrefGoogle Scholar

  • 14. Chen, X., Thakkar, H., Tyan, F., Gim, S., Robinson, H., Lee, C., Pandey, S.K., Nwokorie, C., Onwudiwe, N. and Srivastava, R.K. Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene 20 (2001) 6073-6155.CrossrefGoogle Scholar

  • 15. Dida, F., Li, Y., Iwao, A., Deguchi, T., Azuma, E. and Komada, Y. Resistance to TRAIL-induced apoptosis caused by constitutional phosphorylation of Akt and PTEN in acute lymphoblastic leukemia cells. Exp. Hematol. 36 (2008) 1343-1395.CrossrefWeb of ScienceGoogle Scholar

  • 16. Gibson, E.M., Henson, E.S., Haney, N., Villanueva, J. and Gibson, S.B. Epidermal growth factor protects epithelial-derived cells from tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by inhibiting cytochrome c release. Cancer Res. 62 (2002) 488-583.Google Scholar

  • 17. Bonni, A., Brunet, A., West, A.E., Datta, S.R., Takasu, M.A. and Greenberg, M.E. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286 (1999) 1358-1419.CrossrefGoogle Scholar

  • 18. Goncharenko-Khaider, N., Lane, D., Matte, I., Rancourt, C. and Piche, A. The inhibition of Bid expression by Akt leads to resistance to TRAILinduced apoptosis in ovarian cancer cells. Oncogene 29 (2010) 5523-5558.CrossrefGoogle Scholar

  • 19. Johnstone, R.W., Frew, A.J. and Smyth, M.J. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat. Rev. Cancer 8 (2008) 782-179.CrossrefWeb of ScienceGoogle Scholar

  • 20. Kim, M.O., Moon, D.O., Kang, C.H., Kwon, T.K., Choi, Y.H. and Kim, G.Y. beta-Ionone enhances TRAIL-induced apoptosis in hepatocellular carcinoma cells through Sp1-dependent upregulation of DR5 and downregulation of NF-kappaB activity. Mol. Cancer Ther. 9 (2010) 833-875.Google Scholar

  • 21. Shankar, E., Krishnamurthy, S., Paranandi, R. and Basu, A. PKCepsilon induces Bcl-2 by activating CREB. Int. J. Oncol. 36 (2010) 883-890.Web of ScienceGoogle Scholar

  • 22. Wiesenauer, C.A., Yip-Schneider, M.T., Wang, Y. and Schmidt, C.M. Multiple anticancer effects of blocking MEK-ERK signaling in hepatocellular carcinoma. J. Am. Coll. Surg. 198 (2004) 410-430.CrossrefGoogle Scholar

  • 23. Li, Y., Wang, H., Wang, Z., Makhija, S., Buchsbaum, D., LoBuglio, A., Kimberly, R. and Zhou, T. Inducible resistance of tumor cells to tumor necrosis factor-related apoptosis-inducing ligand receptor 2-mediated apoptosis by generation of a blockade at the death domain function. Cancer Res. 66 (2006) 8520-8527.Google Scholar

  • 24. Johnson, T.R., Stone, K., Nikrad, M., Yeh, T., Zong, W.X., Thompson, C.B., Nesterov, A. and Kraft, A.S. The proteasome inhibitor PS-341 overcomes TRAIL resistance in Bax and caspase 9-negative or Bcl-xL overexpressing cells. Oncogene 22 (2003) 4953-5015.CrossrefGoogle Scholar

  • 25. Koschny, R., Ganten, T.M., Sykora, J., Haas, T.L., Sprick, M.R., Kolb, A., Stremmel, W. and Walczak, H. TRAIL/bortezomib cotreatment is potentially hepatotoxic but induces cancer-specific apoptosis within a therapeutic window. Hepatology 45 (2007) 649-706.Web of ScienceCrossrefGoogle Scholar

  • 26. Liu, X., Yue, P,. Chen, S., Hu, L., Lonial, S., Khuri, F.R. and Sun, S.Y. The proteasome inhibitor PS-341 (bortezomib) upregulates DR5 expression leading to induction of apoptosis and enhancement of TRAIL-induced apoptosis despite upregulation of c-FLIP and survivin expression in human NSCLC cells. Cancer Res. 67 (2007) 4981-4988.Web of ScienceGoogle Scholar

  • 27. Lundqvist, A., Abrams, S.I., Schrump, D.S., Alvarez, G., Suffredini, D., Berg, M. and Childs, R. Bortezomib and depsipeptide sensitize tumors to tumor necrosis factor-related apoptosis-inducing ligand: a novel method to potentiate natural killer cell tumor cytotoxicity. Cancer Res. 66 (2006) 7317-7341.CrossrefGoogle Scholar

  • 28. Saulle, E., Petronelli, A., Pasquini, L., Petrucci, E., Mariani, G., Biffoni, M., Ferretti, G., Scambia, G., Benedetti-Panici, P., Cognetti, F., Humphreys, R., Peschle, C. and Testa, U. Proteasome inhibitors sensitize ovarian cancer cells to TRAIL induced apoptosis. Apoptosis 12 (2007) 635-689.Web of ScienceCrossrefGoogle Scholar

  • 29. Hanahan, D. and Weinberg, R.A. The hallmarks of cancer. Cell 100 (2000) 57-126.CrossrefGoogle Scholar

  • 30. Zhang, L. and Fang, B. Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther. 12 (2005) 228-264.CrossrefGoogle Scholar

  • 31. Frese, S., Pirnia, F., Miescher, D., Krajewski, S., Borner, M.M., Reed, J.C. and Schmid, R.A. PG490-mediated sensitization of lung cancer cells to Apo2L/TRAIL-induced apoptosis requires activation of ERK2. Oncogene 22 (2003) 5427-5461.Google Scholar

  • 32. Kim, Y.H., Lee, D.H., Jeong, J.H., Guo, Z.S. and Lee, Y.J. Quercetin augments TRAIL-induced apoptotic death: involvement of the ERK signal transduction pathway. Biochem. Pharmacol. 75 (2008) 1946-2003.Web of ScienceCrossrefGoogle Scholar

  • 33. Lunghi, P., Giuliani, N., Mazzera, L., Lombardi, G., Ricca, M., Corradi, A., Cantoni, A.M., Salvatore, L., Riccioni, R., Costanzo, A., Testa, U., Levrero, M., Rizzoli, V. and Bonati, A. Targeting MEK/MAPK signal transduction module potentiates ATO-induced apoptosis in multiple myeloma cells through multiple signaling pathways. Blood 112 (2008) 2450-2511.CrossrefGoogle Scholar

  • 34. Ganten, T.M., Koschny, R., Haas, T.L., Sykora, J., Li-Weber, M., Herzer, K. and Walczak, H. Proteasome inhibition sensitizes hepatocellular carcinoma cells, but not human hepatocytes, to TRAIL. Hepatology 42 (2005) 588-684. CrossrefGoogle Scholar

About the article

Received: 2014-08-16

Accepted: 2015-06-17

Published Online: 2015-10-15

Published in Print: 2015-12-01


Citation Information: Cellular and Molecular Biology Letters, Volume 20, Issue 4, Pages 535–548, ISSN (Online) 1689-1392, DOI: https://doi.org/10.1515/cmble-2015-0030.

Export Citation

© 2015.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Yong Liu and Mei Zhang
Cancer Biotherapy and Radiopharmaceuticals, 2019, Volume 34, Number 6, Page 398
[3]
G. V. Rukavishnikov, A. O. Kibitov, G. E. Mazo, and N. G. Neznanov
Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova, 2019, Volume 119, Number 1, Page 89
[4]
Yu Fang, Guoxing Liu, Chengzhi Xie, Ke Qian, Xiaohua Lei, Qiang Liu, Gao Liu, Zhenyu Cao, Jie Fu, Huihui Du, Sushun Liu, Shengfu Huang, Jixiong Hu, and Xundi Xu
Biomedicine & Pharmacotherapy, 2018, Volume 101, Page 910
[5]
Milena Simões Peixoto, Marcos Felipe de Oliveira Galvão, and Silvia Regina Batistuzzo de Medeiros
Chemosphere, 2017

Comments (0)

Please log in or register to comment.
Log in