Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 20, Issue 4

Ras Transformation Overrides a Proliferation Defect Induced by Tpm3.1 Knockout

Jason D. Coombes
  • Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Galina Schevzov
  • Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chin-Yi Kan
  • Cancer Cell Development Group, Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Sydney, NSW 2052, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carlotta Petti
  • Cancer Cell Development Group, Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Sydney, NSW 2052, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michelle F. Maritz
  • Cancer Cell Development Group, Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Sydney, NSW 2052, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shane Whittaker
  • Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karen L. Mackenzie
  • Cancer Cell Development Group, Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Sydney, NSW 2052, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter W. Gunning
  • Corresponding author
  • Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-15 | DOI: https://doi.org/10.1515/cmble-2015-0037


Extensive re-organisation of the actin cytoskeleton and changes in the expression of its binding proteins is a characteristic feature of cancer cells. Previously we have shown that the tropomyosin isoform Tpm3.1, an integral component of the actin cytoskeleton in tumor cells, is required for tumor cell survival. Our objective was to determine whether cancer cells devoid of Tpm3.1 would evade the tumorgenic effects induced by H-Ras transformation. The tropomyosin isoform (Tpm) expression profile of a range of cancer cell lines (21) demonstrates that Tpm3.1 is one of the most broadly expressed Tpm isoform. Consequently, the contribution of Tpm3.1 to the transformation process was functionally evaluated. Primary embryonic fibroblasts isolated from wild type (WT) and Tpm3.1 knockout (KO) mice were transduced with retroviral vectors expressing SV40 large T antigen and an oncogenic allele of the H-Ras gene, H-RasV12, to generate immortalized and transformed WT and KO MEFs respectively. We show that Tpm3.1 is required for growth factor-independent proliferation in the SV40 large T antigen immortalized MEFs, but this requirement is overcome by H-Ras transformation. Consistent with those findings, we found that Tpm3.1 was not required for anchorage independent growth or growth of H-Ras-driven tumors in a mouse model. Finally, we show that pERK and Importin 7 protein interactions are significantly decreased in the SV40 large T antigen immortalized KO MEFs but not in the H-Ras transformed KO cells, relative to control MEFs. The data demonstrate that H-Ras transformation overrides a requirement for Tpm3.1 in growth factor-independent proliferation of immortalized MEFs. We propose that in the SV40 large T antigen immortalized MEFs, Tpm3.1 is partly responsible for the efficient interaction between pERK and Imp7 resulting in cell proliferation, but this is overidden by Ras transformation.

This article offers supplementary material which is provided at the end of the article.

Keywords : Actin; Cytoskeleton; Tropomyosin; Cancer; Tumor; ERK; Ras; Transformation


  • 1. Hanahan, D. and Weinberg, R.A. The hallmarks of cancer. Cell 100 (2000) 57-70.CrossrefGoogle Scholar

  • 2. Yamaguchi, H. and Condeelis, J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta 1773 (2007) 642-652.Google Scholar

  • 3. Stehn, J.R., Schevzov, G., O'Neill, G.M. and Gunning, P.W. Specialisation of the tropomyosin composition of actin filaments provides new potential targets for chemotherapy. Curr. Cancer Drug Targets 6 (2006) 245-256.Google Scholar

  • 4. Stevenson, R.P., Veltman, D. and Machesky, L.M. Actin-bundling proteins in cancer progression at a glance. J. Cell Sci. 125 (2012) 1073-1079.CrossrefGoogle Scholar

  • 5. Rao, J. and Li, N. Microfilament actin remodeling as a potential target for cancer drug development. Curr. Cancer Drug Targets 4 (2004) 345-354.Google Scholar

  • 6. Gunning, P., O'Neill, G. and Hardeman, E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol. Rev. 88 (2008) 1-35.CrossrefGoogle Scholar

  • 7. Bryce, N.S., Schevzov, G., Ferguson, V., Percival, J.M., Lin, J.J., Matsumura, F., Bamburg, J.R., Jeffrey, P.L., Hardeman, E.C., Gunning, P. and Weinberger, R.P. Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol. Biol. Cell 14 (2003) 1002-1016.CrossrefGoogle Scholar

  • 8. Coulton, A.T., East, D.A., Galinska-Rakoczy, A., Lehman, W. and Mulvihill, D.P. The recruitment of acetylated and unacetylated tropomyosin to distinct actin polymers permits the discrete regulation of specific myosins in fission yeast. J. Cell Sci. 123 (2010) 3235-3243.CrossrefGoogle Scholar

  • 9. Creed, S.J., Desouza, M., Bamburg, J.R., Gunning, P. and Stehn, J. Tropomyosin isoform 3 promotes the formation of filopodia by regulating the recruitment of actin-binding proteins to actin filaments. Exp. Cell Res. 317 (2011) 249-261.Google Scholar

  • 10. McMichael, B.K., Kotadiya, P., Singh, T., Holliday, L.S. and Lee, B.S. Tropomyosin isoforms localize to distinct microfilament populations in osteoclasts. Bone 39 (2006) 694-705. CrossrefGoogle Scholar

  • 11. Schevzov, G., Bryce, N.S., Almonte-Baldonado, R., Joya, J., Lin, J.J., Hardeman, E., Weinberger, R. and Gunning, P. Specific features of neuronal size and shape are regulated by tropomyosin isoforms. Mol. Biol. Cell 16 (2005) 3425-3437.CrossrefGoogle Scholar

  • 12. Yamashiro, S., Gokhin, D.S., Sui, Z., Bergeron, S.E., Rubenstein, P.A. and Fowler, V.M. Differential actin-regulatory activities of Tropomodulin1 and Tropomodulin3 with diverse tropomyosin and actin isoforms. J. Biol. Chem. 289 (2014) 11616-11629.Google Scholar

  • 13. Chhabra, E.S. and Higgs, H.N. The many faces of actin: matching assembly factors with cellular structures. Nat. Cell. Biol. 9 (2007) 1110-1121.CrossrefGoogle Scholar

  • 14. Geeves, M.A., Hitchcock-DeGregori, S.E. and Gunning, P.W. A systematic nomenclature for mammalian tropomyosin isoforms. J. Muscle Res. Cell. Motil. 36 2014) 147-153.Google Scholar

  • 15. Stehn, J.R., Haass, N.K., Bonello, T., Desouza, M., Kottyan, G., Treutlein, H., Zeng, J., Nascimento, P.R., Sequeira, V.B., Butler, T.L., Allanson, M., Fath, T., Hill, T.A., McCluskey, A., Schevzov, G., Palmer, S.J., Hardeman, E.C., Winlaw, D., Reeve, V.E., Dixon, I., Weninger, W., Cripe, T.P. and Gunning, P.W. A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells. Cancer Res. 73 (2013) 5169-5182.CrossrefGoogle Scholar

  • 16. Helfman, D.M., Flynn, P., Khan, P. and Saeed, A. Tropomyosin as a regulator of cancer cell transformation. Adv. Exp. Med. Biol. 644 (2008) 124-131.Google Scholar

  • 17. Chow, S.N., Chen, R.J., Chen, C.H., Chang, T.C., Chen, L.C., Lee, W.J., Shen, J. and Chow, L.P. Analysis of protein profiles in human epithelial ovarian cancer tissues by proteomic technology. Eur. J. Gynaecol. Oncol. 31 (2010) 55-62.Google Scholar

  • 18. Tao, T., Shi, Y., Han, D., Luan, W., Qian, J., Zhang, J., Wang, Y. and You, Y. TPM3, a strong prognosis predictor, is involved in malignant progression through MMP family members and EMT-like activators in gliomas. Tumour Biol. 35 (2014) 9053-9059.CrossrefGoogle Scholar

  • 19. Gimona, M., Kazzaz, J.A. and Helfman, D.M. Forced expression of tropomyosin 2 or 3 in v-Ki-ras-transformed fibroblasts results in distinct phenotypic effects. Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 9618-9623.Google Scholar

  • 20. Raval, G.N., Bharadwaj, S., Levine, E.A., Willingham, M.C., Geary, R.L., Kute, T. and Prasad, G.L. Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene 22 (2003) 6194-6203.CrossrefGoogle Scholar

  • 21. Shields, J.M., Mehta, H., Pruitt, K. and Der, C.J. Opposing roles of the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase cascades in Ras-mediated downregulation of tropomyosin. Mol. Cell Biol. 22 (2002) 2304-2317.CrossrefGoogle Scholar

  • 22. Yager, M.L., Hughes, J.A., Lovicu, F.J., Gunning, P.W., Weinberger, R.P. and O'Neill, G.M. Functional analysis of the actin-binding protein, tropomyosin 1, in neuroblastoma. Br. J. Cancer 89 (2003) 860-863. CrossrefGoogle Scholar

  • 23. Shah, V., Bharadwaj, S., Kaibuchi, K. and Prasad, G.L. Cytoskeletal organization in tropomyosin-mediated reversion of ras-transformation: Evidence for Rho kinase pathway. Oncogene 20 (2001) 2112-2121.CrossrefGoogle Scholar

  • 24. Hook, J., Lemckert, F., Schevzov, G., Fath, T. and Gunning, P. Functional identity of the gamma tropomyosin gene: Implications for embryonic development, reproduction and cell viability. Bioarchitecture 1 (2011) 49-59.CrossrefGoogle Scholar

  • 25. Percival, J.M., Thomas, G., Cock, T.A., Gardiner, E.M., Jeffrey, P.L., Lin, J.J., Weinberger, R.P. and Gunning, P. Sorting of tropomyosin isoforms in synchronised NIH 3T3 fibroblasts: evidence for distinct microfilament populations. Cell Motil. Cytoskel. 47 (2000) 189-208.CrossrefGoogle Scholar

  • 26. Schevzov G., Kee, A.J., Wang, B., Sequeira, V.B., Hook, J., Coombes, J.D., Lucas, C.A., Stehn J.R., Musgrove E.A., Cretu A., Assoian R., Fath T., Hanoch T., Seger R., Pleines, I., Kile, B.T., Hardeman, E.C. and Gunning, P.W. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Mol. Biol. Cell. 26 (2015) 2475-2490.CrossrefGoogle Scholar

  • 27. Choi, H.S., Yim, S.H., Xu, H.D., Jung, S.H., Shin, S.H., Hu, H.J., Jung, C.K., Choi, J.Y. and Chung, Y.J. Tropomyosin3 overexpression and a potential link to epithelial-mesenchymal transition in human hepatocellular carcinoma. BMC Cancer 10 (2010) 122.CrossrefGoogle Scholar

  • 28. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3 (2003) 11-22.CrossrefGoogle Scholar

  • 29. Bos, J.L. ras oncogenes in human cancer: a review. Cancer Res. 49 (1989) 4682-4689.Google Scholar

  • 30. Cox, A.D. and Der, C.J. Ras family signaling: therapeutic targeting. Cancer Biol. Ther. 1 (2002) 599-606.CrossrefGoogle Scholar

  • 31. Roberts, P.J. and Der, C.J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26 (2007) 3291-3310. CrossrefGoogle Scholar

  • 32. Keshet, Y. and Seger, R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol. Biol. 661 (2010) 3-38.Google Scholar

  • 33. Chuderland, D., Konson, A. and Seger, R. Identification and characterization of a general nuclear translocation signal in signaling proteins. Mol. Cell 31 (2008) 850-861.CrossrefGoogle Scholar

  • 34. Plotnikov, A., Flores, K., Maik-Rachline, G., Zehorai, E., Kapri-Pardes, E., Berti, D.A., Hanoch, T., Besser, M.J. and Seger, R. The nuclear translocation of ERK1/2 as an anticancer target. Nat. Commun. 6 (2015) 6685.Google Scholar

  • 35. Vlahovich, N., Kee, A.J., Van der Poel, C., Kettle, E., Hernandez-Deviez, D., Lucas, C., Lynch, G.S., Parton, R.G., Gunning, P.W. and Hardeman, E.C. Cytoskeletal tropomyosin Tm5NM1 is required for normal excitationcontraction coupling in skeletal muscle. Mol. Biol. Cell 20 (2009) 400-409.CrossrefGoogle Scholar

  • 36. Schevzov, G., Vrhovski, B., Bryce, N.S., Elmir, S., Qiu, M.R., O'Neill, G.M., Yang, N., Verrills, N.M., Kavallaris, M. and Gunning, P.W. Tissue-specific Tropomyosin Isoform Composition. J. Histochem. Cytochem. 53 (2005) 557-570.CrossrefGoogle Scholar

  • 37. Land, H., Parada, L.F. and Weinberg, R.A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304 (1983) 596-602.Google Scholar

  • 38. Hahn, W.C., Counter, C.M., Lundberg, A.S., Beijersbergen, R.L., Brooks, M.W. and Weinberg, R.A. Creation of human tumour cells with defined genetic elements. Nature 400 (1999) 464-468.Google Scholar

  • 39. Taylor, L.M., James, A., Schuller, C.E., Brce, J., Lock, R.B. and Mackenzie, K.L. Inactivation of p16INK4a, with retention of pRB and p53/p21cip1 function, in human MRC5 fibroblasts that overcome a telomere-independent crisis during immortalization. J. Biol. Chem. 279 (2004) 43634-43645.Google Scholar

  • 40. Novy, R.E., Sellers, J.R., Liu, L.F. and Lin, J.J. In vitro functional characterization of bacterially expressed human fibroblast tropomyosin isoforms and their chimeric mutants. Cell Motil. Cytoskel. 26 (1993) 248-261.CrossrefGoogle Scholar

  • 41. Hannan, A.J., Gunning, P., Jeffrey, P.L. and Weinberger, R.P. Structural compartments within neurons: developmentally regulated organization of microfilament isoform mRNA and protein. Mol. Cell. Neurosci. 11 (1998) 289-304.CrossrefGoogle Scholar

  • 42. Hanahan, D. and Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144 (2011) 646-674.CrossrefGoogle Scholar

  • 43. Button, E., Shapland, C. and Lawson, D. Actin, its associated proteins and metastasis. Cell Motil. Cytoskel. 30 (1995) 247-251.CrossrefGoogle Scholar

  • 44. Pawlak, G. and Helfman, D.M. Cytoskeletal changes in cell transformation and tumorigenesis. Curr. Opin. Genet. Dev. 11 (2001) 41-47.CrossrefGoogle Scholar

  • 45. Kharitonova, M.A., Kopnin, P.B. and Vasiliev, J.M. Transformation by RAS oncogene decreases the width of substrate-spread fibroblasts but not their length. Cell Biol. Int. 31 (2007) 220-223.CrossrefGoogle Scholar

  • 46. Temm-Grove, C.J., Jockusch, B.M., Weinberger, R.P., Schevzov, G. and Helfman, D.M. Distinct localizations of tropomyosin isoforms in LLC-PK1 epithelial cells suggests specialized function at cell-cell adhesions. Cell Motil. Cytoskel. 40 (1998) 393-407.CrossrefGoogle Scholar

  • 47. Caldwell, B.J., Lucas, C., Kee, A.J., Gaus, K., Gunning, P.W., Hardeman, E.C., Yap, A.S. and Gomez, G.A. Tropomyosin isoforms support actomyosin biogenesis to generate contractile tension at the epithelial zonula adherens. Cytoskeleton (Hoboken, N.J.) 71 (2014) 663-676.Google Scholar

  • 48. Haroon, Z.A., Amin, K., Lichtlen, P., Sato, B., Huynh, N.T., Wang, Z., Schaffner, W. and Murphy, B.J. Loss of metal transcription factor-1 suppresses tumor growth through enhanced matrix deposition. FASEB J. 18 (2004) 1176-1184.CrossrefGoogle Scholar

  • 49. Vrhovski, B., Lemckert, F. and Gunning, P. Modification of the tropomyosin isoform composition of actin filaments in the brain by deletion of an alternatively spliced exon. Neuropharmacology 47 (2004) 684-693. CrossrefGoogle Scholar

  • 50. Fath, T., Agnes Chan, Y.K., Vrhovski, B., Clarke, H., Curthoys, N., Hook, J., Lemckert, F., Schevzov, G., Tam, P., Watson, C.M., Khoo, P.L. and Gunning, P. New aspects of tropomyosin-regulated neuritogenesis revealed by the deletion of Tm5NM1 and 2. Eur. J. Cell Biol. 89 (2010) 489-498.CrossrefGoogle Scholar

  • 51. Schwartz, M.A. and Assoian, R.K. Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J. Cell Sci. 114 (2001) 2553-2560.Google Scholar

  • 52. Weber, J.D., Raben, D.M., Phillips, P.J. and Baldassare, J.J. Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem. J. 326 (1997) 61-68.Google Scholar

  • 53. Soderberg, O., Gullberg, M., Jarvius, M., Ridderstrale, K., Leuchowius, K.J., Jarvius, J., Wester, K., Hydbring, P., Bahram, F., Larsson, L.G. and Landegren, U. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3 (2006) 995-1000. CrossrefGoogle Scholar

About the article

Received: 2015-05-28

Accepted: 2015-07-30

Published Online: 2015-10-15

Published in Print: 2015-12-01

Citation Information: Cellular and Molecular Biology Letters, Volume 20, Issue 4, Pages 626–646, ISSN (Online) 1689-1392, DOI: https://doi.org/10.1515/cmble-2015-0037.

Export Citation

© 2015. Copyright Clearance Center

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Simon Brayford, Nicole S. Bryce, Galina Schevzov, Elizabeth M. Haynes, James E. Bear, Edna C. Hardeman, and Peter W. Gunning
Current Biology, 2016, Volume 26, Number 10, Page 1312

Comments (0)

Please log in or register to comment.
Log in