Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 20, Issue 5


How taste works: cells, receptors and gustatory perception

Dariusz Kikut-Ligaj
  • Corresponding author
  • Department of Department of Natural Science and Quality Assurance, Faculty of Commodity Science, University of Economics, Al. Niepodległości 10, 61-875 Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Trzcielińska-Lorych
  • Department of Histology and Embryology, Poznań University of Medical Sciences, ul. Święcickiego 6, 60-781 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-05 | DOI: https://doi.org/10.1515/cmble-2015-0042


The sensitivity of taste in mammals varies due to quantitative and qualitative differences in the structure of the taste perception organs. Gustatory perception is made possible by the peripheral chemosensory organs, i.e., the taste buds, which are distributed in the epithelium of the taste papillae of the palate, tongue, epiglottis, throat and larynx. Each taste bud consists of a community of ~100 cells that process and integrate taste information with metabolic needs. Mammalian taste buds are contained in circumvallate, fungiform and foliate papillae and react to sweet, salty, sour, bitter and umami stimuli. The sensitivity of the taste buds for individual taste stimuli varies extensively and depends on the type of papillae and the part of the oral cavity in which they are located. There are at least three different cell types found in mammalian taste buds: type I cells, receptor (type II) cells and presynaptic (type III) cells. This review focuses on the biophysiological mechanisms of action of the various taste stimuli in humans. Currently, the best-characterized proteins are the receptors (GPCR). In addition, the activation of bitter, sweet and umami tastes are relatively well known, but the activation of salty and sour tastes has yet to be clearly explained.

Keywords: Taste papillae; Taste buds; Taste perception; Basic taste qualities; Types of cells located in the taste buds; Activation of taste receptor cells; Epithelial sodium channels; ENaC; Bitter; Sweet and umami taste receptors; TASRs; Extra-oral tissue TAS2Rs; Calcium homeostasis modulator 1 channel; CALHM1


  • 1. Kikut-Ligaj, D. Prediction of the bitter taste of chromones and furochromones using Simple Pharmacophore Model (SPM). Food Science Technology Quality 1 (2014) 200-214.Google Scholar

  • 2. Nelson, G., Hoon, M.A., Chandrashekar, J., Zhang, Y., Ryba, N.J. and Zuker, C.S. Mammalian sweet taste receptors. Cell 106 (2001) 381-390.Google Scholar

  • 3. Liu, Q., Zhang, D., Zhang, F., Zhao, Y., Hsia, K.J. and Wang, P. Biosensor recording of extracellular potentials in the taste epithelium for bitter detection. Sens. Actuators B Chem. 176 (2013) 497-504.Google Scholar

  • 4. Cardello, A.V. and Wise, P.M. Taste, smell and chemesthesis in product experience. in: Prod. Experience (Schifferstein, H.N.I. and Hekkert, P. Eds.), 2008, 91-131.Google Scholar

  • 5. Kikut-Ligaj, D., Skolik, A., Włodarczak, J. and Wysocka, W. Prediction of bitter taste of some bis-quinolizidine alkaloids. Polish J. Commod. Sci. 3 (2010) 103-114.Google Scholar

  • 6. Favalli, S., Skov, T. and Byrne, D.V. Sensory perception and understanding of food uniqueness: From the traditional to the novel. Food Res. Int. 50 (2013) 176-188.CrossrefGoogle Scholar

  • 7. Iwasiewicz, A. [Quality management. Fundamental problems and methods.] PWN, Warsaw, Poland, 1999, in Polish.Google Scholar

  • 8. Smith, D.V. and Margolskee, R.F. Making sense of taste. Sci. Am. 284 (2001) 32-39.Google Scholar

  • 9. Chen, X., Gabitto, M., Peng, Y., Ryba, N.J. and Zuker, C.S. A gustotopic map of taste qualities in the mammalian. Brain Sci. 333 (2011) 1262-1266.Google Scholar

  • 10. Essick, G.K., Chopra, A., Guest, S. and McGlone, F. Lingual tactile acuity, taste perception, and the density and diameter of fungiform papillae in female subjects. Physiol. Behav. 80 (2003) 289-302.CrossrefGoogle Scholar

  • 11. Trivedi, B.P. Gustatory system: the finer points of taste. Nature 486 (2012) S2-3. DOI:10.1038/486S2a.CrossrefGoogle Scholar

  • 12. Yarmolinsky, D.A., Zuker, C.S. and Ryba, N.J. Common sense about taste: from mammals to insects. Cell 139 (2009) 234-244.Google Scholar

  • 13. Roper, S.D. Taste buds as peripheral chemosensory processors. Semin. Cell Dev. Biol. 24 (2013) 71-79.CrossrefGoogle Scholar

  • 14. Kobayashi, K., Miyata, K. and Iino, T. Three-dimensional structures of the connective tissue papillae of the tongue in the newborn dogs. Arch. Histol. Jpn. 50 (1987) 347-357.CrossrefGoogle Scholar

  • 15. Jackowiak, H. and Godynicki, S. The scanning electron microscopic study of lingual papillae in the silver fox (Vulpes vulpes fulva, Desmarest, 1820). Ann. Anat. 186 (2004) 179-183.Google Scholar

  • 16. König, H.E. and Liebich, H.G. Veterinary Anatomy of Domestic Mammals. Textbook and Colour Atlas. 3. Ed. Schattauer, Stuttgart, New York, 2006.Google Scholar

  • 17. Schmidt, R.F. and Thews, G. Physiologie des Menschen 26. Auflage Berlin, Heidelberg, Springer, 1995.Google Scholar

  • 18. Kubota, K., Kubota, J., Fukuda, N., Asakura, S., Nakagawa, S. and Masui, M. Comparative anatomical and neurohistological observations on the tongue of the marsupials. Anat. Rec. 147 (1963) 337-353.Google Scholar

  • 19. Emura, S., Hayakawa, D., Chen, H. and Shoumura, S. Morphology of the lingual papillae in the tiger. Okajimas Folia Anat. Jpn. 81 (2004) 39-44.Google Scholar

  • 20. Iwasaki, S. and Sakata, K. Scanning electron microscopy of the lingual dorsal surface of the beagle dog. Okajimas Folia Anat. Jpn. 62 (1985) 1-14.Google Scholar

  • 21. Chamorro, C.A., de Paz, P., Snadval, J. and Fernandez, J.G. Comparative scanning electron-microscopic study of the lingual papillae in two species of domestic mammals (Equus caballus and Bos taurus). I. Gustatory papillae. Acta Anat. 125 (1986) 83-87.CrossrefGoogle Scholar

  • 22. Emura, S., Hayakawa, D., Chen, H. and Shoumura, S. SEM and gross study on the lingual surface of the lion, Panthera leo. Mamm. Sci. 43 (2003) 45-50.Google Scholar

  • 23. Jung, H.S., Akita, K. and Kim, J.Y. Spacing patterns on tongue surfacegustatory papilla. Int. J. Dev. Biol. 48 (2004) 157-161.CrossrefGoogle Scholar

  • 24. Piludu, M., Lantini, M.S., Cossu, M., Piras, M., Oppenheim, F.G., Helmerhorst, E.J., Siqueira, W. and Hand, A.R. Salivary histatins in human deep posterior lingual glands (of von Ebner). Arch. Oral. Biol. 51 (2006) 967-973.CrossrefGoogle Scholar

  • 25. Zhang, Y., Hoon, M.A., Chandrashekar, J., Mueller, K.L., Cook, B. and Wu, D. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112 (2003) 293-301.Google Scholar

  • 26. Brondel, L., Jacquin, A., Meillon, S. and Pénicaud, L. Taste: physiology, roles and dysfunction. Nutr. Clin. Métabol. 27 (2013) 123-133.CrossrefGoogle Scholar

  • 27. Bartoshuk, L.M. Sweetness: history, preference and genetic variability. Food Technol. 45 (1991) 108-113.Google Scholar

  • 28. Srur, E., Stachs, O., Guthoff, R., Witt, M., Pau, H.W. and Just, T. Change of the human taste bud volume over time. Auris Nasus Larynx. 37 (2010) 449-455.CrossrefGoogle Scholar

  • 29. Lalonde, E.R. and Eglitis, J.A. Number and distribution of taste buds on the epiglottis, pharynx, larynx, soft palate and uvula in a human newborn. Anat. Rec. 140 (1961) 91-95. CrossrefGoogle Scholar

  • 30. Miller, Jr I.J. Variation in human fungiform taste bud densities among regions and subjects. Anat. Rec. 216 (1986) 474-482.Google Scholar

  • 31. Miller, Jr I.J. Anatomy of the peripheral taste system. in: Handbook of olfaction and gustation. (Doty, R.L. Eds.) Dekker, New York, U.S.A. 1995, 521-547.Google Scholar

  • 32. Murray, R.G. Cellular relations in mouse circumvallate taste buds. Microsc. Res. Tech. 26 (1993) 209-224.CrossrefGoogle Scholar

  • 33. Delay, R.J., Kinnamon, J.C. and Roper, S.D. Ultrastructure of mouse vallate taste buds: II. Cell types and cell lineage. J. Comp. Neurol. 253 (1986) 242-252.Google Scholar

  • 34. Nelson, G.M. and Finger, T.E. Immunolocalization of different forms of neural cell adhesion molecule (NCAM) in rat taste buds. J. Comp. Neurol. 336 (1993) 507-516.Google Scholar

  • 35. Pumplin, D.W., Yu, C. and Smith, D.V. Light and dark cells of rat vallate taste buds are morphologically distinct cell types. J. Comp. Neurol. 378 (1997) 389-410.Google Scholar

  • 36. Perea-Martinez, I., Nagai, T. and Chaudhari, N. Functional cell types in taste buds have distinct longevities. PLoS One 8 (2013) e53399. DOI:10.1371/journal.pone. 0053399.CrossrefGoogle Scholar

  • 37. Clapp, T.R., Yang, R., Stoick, C.L., Kinnamon, S.C. and Kinnamon, J.C. Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway. J. Comp. Neurol. 468 (2004) 311-321.Google Scholar

  • 38. DeFazio, R.A., Dvoryanchikov, G., Maruyama, Y., Kim, J.W., Pereira, E., Roper, S.D. and Chaudhari, N. Separate populations of receptor cells and presynaptic cells in mouse taste buds. J. Neurosci. 26 (2006) 3971-3980.CrossrefGoogle Scholar

  • 39. Huang, Y.A., Maruyama, Y., Stimac, R. and Roper, S.D. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste. J. Physiol. 586 (2008) 2903-2912.Google Scholar

  • 40. Chaudhari, N. and Roper, S.D. The cell biology of taste. J. Cell Biol. 190 (2010) 285-296.Google Scholar

  • 41. Tomchik, S.M., Berg, S., Kim, J.W., Chaudhari N. and Roper S.D. Breadth of tuning and taste coding in mammalian taste buds. J. Neurosci. 27 (2007) 10840-10848. DOI:10.1523/JNEUROSCI.1863-07.CrossrefGoogle Scholar

  • 42. Wilkie, L.M. and Capaldi Phillips, E.D. Heterogeneous binary interactions of taste primaries: Perceptual outcomes, physiology, and future directions. Neurosci. Biobehav. Rev. 47C (2014) 70-86. DOI:10.1016/j.neubiorev. 2014.07.015.CrossrefGoogle Scholar

  • 43. Reed, D.R. and Knaapila, A. Genetics of taste and smell: poisons and pleasures. Progr. Mol. Biol. Transl. Sci. 94 (2010) 213-240.CrossrefGoogle Scholar

  • 44. Vandenbeuch, A., Clapp, T.R. and Kinnamon, S.C. Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci. 9 (2008). DOI:10.1186/1471-2202-9-1. CrossrefGoogle Scholar

  • 45. Liman, E.R., Zhang, Y.V. and Montell, C. Peripheral coding of taste. Neuron 81 (2014) 984-1000.CrossrefGoogle Scholar

  • 46. Chang, T., Ke, Y., Ly, K. and McDonald, F.J. COMMD1 regulates the delta epithelial sodium channel (dENaC) through trafficking and ubiquitination. Biochem. Biophys. Res. Commun. 411 (2011) 506-511.Google Scholar

  • 47. Stevens, D.R., Seifert, R., Bufe, B., Müller, F., Kremmer, E., Gauss, R., Meyerhof, W., Kaupp, U.B. and Lindemann, B. Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature 413 (2001) 631-635.Google Scholar

  • 48. Richter, T.A., Dvoryanchikov, G.A., Chaudhari, N. and Roper, S.D. Acidsensitive two-pore domain potassium (K2P) channels in mouse taste buds. J. Neurophysiol. 92 (2004) 1928-1936.CrossrefGoogle Scholar

  • 49. Reichling, C., Meyerhof, W. and Behrens, M. Functions of human bitter taste receptor depend on N-glycosylation. J. Neurochem. 106 (2008) 1138-1148.CrossrefGoogle Scholar

  • 50. Kuhn, C., Bufe, B., Batram, C. and Meyerhof, W. Oligomerization of TAS2R bitter taste receptors. Chem. Senses. 35 (2010) 395-406.CrossrefGoogle Scholar

  • 51. Behrens, M. and Meyerhof, W. Bitter taste receptor research comes of age: from characterization to modulation of TAS2Rs. Semin. Cell Dev. Biol. 24 (2013) 215-221.CrossrefGoogle Scholar

  • 52. Scott, K. Taste recognition: food for thought. Neuron 48 (2005) 455-464.CrossrefGoogle Scholar

  • 53. Li, X., Staszewski, L., Xu, H., Durick, K., Zoller, M. and Adler, E. Human receptors for sweet and umami taste. Proc. Natl. Acad. Sci. USA 99 (2002) 4692-4696.Google Scholar

  • 54. Nelson, G., Chandrashekar, J., Hoon, M.A., Feng, L., Zhao, G., Ryba, N.J. and Zuker, C.S. An amino-acid taste receptor. Nature 416 (2002) 199-202.Google Scholar

  • 55. Fuke, S. and Ueda, Y. Interactions between umami and other flavor characteristics. Trends Food Sci. Technol. 7 (1996) 407-411.Google Scholar

  • 56. Sugita, M. Taste perception and coding in the periphery. Cell. Mol. Life Sci. 63 (2006) 2000-2015.CrossrefGoogle Scholar

  • 57. Yamamoto, K. and Ishimaru, Y. Oral and extra-oral taste perception. Sem. Cell Dev. Biol. 24 (2013) 240-246.CrossrefGoogle Scholar

  • 58. Behrens, M. and Meyerhof, W. Gustatory and extragustatory functions of mammalian taste receptors. Physiol. Behav. 105 (2011) 4-13.CrossrefGoogle Scholar

  • 59. Lindemann, B. Receptors and transduction in taste. Nature 413 (2001) 219-225.Google Scholar

  • 60. Ide, N., Sato, E., Ohta, K., Masuda, T. and Kitabatake, N. Interactions of the sweet-tasting proteins thaumatin and lysozyme with the human sweet-taste receptor. J. Agric. Food Chem. 57 (2009) 5884-5890.CrossrefGoogle Scholar

  • 61. Li, X., Li, W., Wang, H., Cao, J., Maehashi, K. and Huang, L. Pseudogenization of a sweet receptor gene accounts for cats' indifference toward sugar. PLoS Genet. 1 (2005) 27-35.Google Scholar

  • 62. Winnig, M., Bufe, B., Kratochwil, N.A., Slack, J.P. and Meyerhof, W. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor. BMC Struct. Biol. 7 (2007). DOI:10.1186/1472-6807-7-66. CrossrefGoogle Scholar

  • 63. Shi, P. and Zhang, J. Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol. Biol. Evol. 23 (2006) 292-300.Google Scholar

  • 64. Biarnés, X., Marchiori, A., Giorgetti, A., Lanzara, C., Gasparini, P., Carloni, P., Born, S., Brockhoff, A., Behrens, M. and Meyerhof, W. Insights into the binding of phenyltiocarbamide (PTC) agonist to its target human TAS2R38 bitter receptor. PLoS One 5 (2010) e12394. DOI:10.1371/journal.pone. 0012394.CrossrefGoogle Scholar

  • 65. Finger, T.E. and Kinnamon, S.C. Taste isn’t just for taste buds anymore. F1000 Biol. Rep. 3 (2011). DOI: 10.3410/B3-20.CrossrefGoogle Scholar

  • 66. Singh, N., Chakraborty, R., Bhullar, R.P. and Chelikani, P. Differential expression of bitter taste receptors in non-cancerous breast epithelial and breast cancer cells. Biochem. Biophys. Res. Commun. 446 (2014) 499-503.Google Scholar

  • 67. Meyerhof, W., Batram, C., Kuhn, C., Brockhoff, A., Chudoba, E., Bufe, B., Appendino, G. and Behrens, M. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Senses. 35 (2010) 157-170.CrossrefGoogle Scholar

  • 68. Ekoff, M., Choi, J.H., James, A., Dahlén, B., Nilsson, G. and Dahlén, S.E. Bitter taste receptor (TAS2R) agonists inhibit IgE-dependent mast cell activation. J. Allergy Clin. Immunol. 134 (2014) 475-478. DOI: 10.1016/j.jaci.2014.02.029. Epub 2014 Apr 19.CrossrefGoogle Scholar

  • 69. Foster, S.R., Roura, E. and Thomas, W.G. Extrasensory perception: odorant and taste receptors beyond the nose and mouth. Pharmacol. Ther. 142 (2013) 41-61.Google Scholar

  • 70. Lee, R.J., Xiong, G., Kofonow, J.M., Chen, B., Lysenko, A., Jiang, P., Abraham, V., Doghramji, L., Adappa, N.D., Palmer J.N., Kennedy, D.W., Beauchamp, G.K., Doulias, P.T., Ischiropoulos, H., Kreindler, J.L., Reed, D.R. and Cohen, N.A. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J. Clin. Invest. 122 (2012) 4145-4159.Google Scholar

  • 71. Behrens, M. and Meyerhof, W. Oral and extraoral bitter taste receptors. Results Probl. Cell Differ. 52 (2010) 87-99. DOI: 10.1007/978-3-642-14426-4_8.CrossrefGoogle Scholar

  • 72. Deshpande, D.A., Wang, W.C., McIlmoyle, E.L., Robinett, K.S., Schillinger, R.M., An, S.S., Sham, J.S. and Liggett, S.B. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat. Med. 16 (2010) 1299-1304.CrossrefGoogle Scholar

  • 73. Reszka, E., Nowakowska-Świrta E., Kupczyk, M., Dudek, W., Świerczyńska-Machura, D., Wittczak, T., Rykała, J., Przybek, M., Jabłońska, E., Kręcisz, B., Kuna, P., Wąsowicz, W. and Pałczyński, C. Expression of bitter taste receptors in the human skin in vitro. J. Clinic. Res. Bioeth. 6 (2015). DOI:10.4172/2155-9627.1000218.CrossrefGoogle Scholar

  • 74. Sternini, C. Taste receptors in the gastrointestinal tract. IV. Functional implications of bitter taste receptors in gastrointestinal chemosensing. Am. J. Physiol. Gastrointest. Liver Physiol. 292 (2007) G457-461. DOI: 10.1152/ajpgi.00411.2006.CrossrefGoogle Scholar

  • 75. Janssen, S., Laermans, J., Verhulst, P.J., Thijs, T., Tack, J. and Depoortere, I. Bitter taste receptors and α-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. Proc. Natl. Acad. Sci. USA 108 (2011) 2094-2099.Google Scholar

  • 76. Clark, A.A., Liggett, S.B. and Munger, S.D. Extraoral bitter taste receptors as mediators of off-target drug effects. FASEB J. 26 (2012) 4827-4831.CrossrefGoogle Scholar

  • 77. Li, F. and Zhou, M. Depletion of bitter taste transduction leads to massive spermatid loss in transgenic mice. Mol. Hum. Reprod. 18 (2012) 289-297.CrossrefGoogle Scholar

  • 78. Voigt, A., Hübner, S., Lossow, K., Hermans-Borgmeyer, I., Boehm, U. and Meyerhof, W. Genetic labeling of Tas1r1 and Tas2r131 taste receptor cells in mice. Chem. Senses. 37 (2012) 897-911.CrossrefGoogle Scholar

  • 79. Singh, N., Vrontakis, M., Parkinson, F. and Chelikani, P. Functional bitter taste receptors are expressed in brain cells. Biochem. Biophys. Res. Commun. 406 (2011)146-151.Google Scholar

  • 80. Ren, X., Zhou, L., Terwilliger, R., Newton, S.S. and de Araujo, I.E. Sweet taste signaling functions as a hypothalamic glucose sensor. Front. Integr. Neurosci. 3 (2009). DOI: 10.3389/neuro.07.012.2009. eCollection 2009.CrossrefGoogle Scholar

  • 81. Margolskee, R.F. Molecular mechanisms of bitter and sweet taste transduction. J. Biol. Chem. 277 (2002) 1-4.Google Scholar

  • 82. Kim, K.S., Egan, J.M. and Jang, H.J. Denatonium induces secretion of glucagon-like peptide-1 through activation of bitter taste receptor pathways. Diabetologia 57 (2014) 2117-2125.Google Scholar

  • 83. Tizzano, M., Dvoryanchikov, G., Barrows, J.K., Kim, S., Chaudhari, N. and Finger, T.E. Expression of Galpha14 in sweet-transducing taste cells of the posterior tongue. BMC Neurosci. 9 (2008). DOI:10.1186/1471-2202-9-110.CrossrefGoogle Scholar

  • 84. Huang, L., Shanker, Y.G., Dubauskaite, J., Zheng, J.Z., Yan, W., Rosenzweig, S. Spielman, A.I., Max, M. and Margolskee, R.F. Ggamma13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat. Neurosci. 2 (1999) 1055-1062.Google Scholar

  • 85. Clapp, T.R., Stone, L.M., Margolskee, R.F. and Kinnamon, S.C. Immunocyto-chemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction. BMC Neurosci. 2 (2001). DOI:10.1186/1471-2202-2-6.CrossrefGoogle Scholar

  • 86. Taruno, A., Vingtdeux, V., Ohmoto, M., Ma, Z., Dvoryanchikov, G., Li, A., Adrien, L., Zhao, H., Leung, S., Abernethy, M., Koppel, J., Davies, P., Civan, M.M., Chaudhari, N., Matsumoto, I., Hellekant, G., Tordoff, M.G., Marambaud, P. and Foskett, J.K. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tasters. Nature 495 (2013) 223-226. DOI: 10.1038 / nature11906. Epub 2013 Mar 06.CrossrefGoogle Scholar

  • 87. Sclafani, A., Marambaud, P. and Ackroff, K. Sucrose-conditioned flavor preferences in sweet ageusic T1r3 and Calhm1 knockout mice. Physiol. Behav. 126 (2014) 25-29. DOI: 10.1016/j.physbeh.2013.12.003. Google Scholar

  • 88. Siebert, A.P. Ma, Z., Grevet, J.D., Demuro, A., Parker, I. and Foskett, J.K. Structural and functional similarities of calcium homeostasis modulator 1 (CALHM1) ion channel with connexins, pannexins and innexins. J. Biol. Chem. 288 (2013) 6140-6153.Google Scholar

  • 89. Dando, R. and Roper, S.D. Cell-to-cell communication in intact taste buds through ATP signalling from pannexin 1 gap junction hemichannels. J. Physiol. 587 (2009) 5899-5906. DOI: 10.1113/jphysiol.2009.180083. CrossrefGoogle Scholar

About the article

Received: 2015-03-18

Accepted: 2015-09-15

Published Online: 2016-03-05

Published in Print: 2015-12-01

Citation Information: Cellular and Molecular Biology Letters, Volume 20, Issue 5, Pages 699–716, ISSN (Online) 1689-1392, DOI: https://doi.org/10.1515/cmble-2015-0042.

Export Citation

© University of Wroclaw, Poland.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Zhiyao Yuan, Junchi Ma, Xin Meng, Ning Chen, and Ming Shen
Oral Diseases, 2018
O. Ramos-Lopez, A. Arpón, J.I. Riezu-Boj, F.I. Milagro, M.L. Mansego, J.A. Martinez, I. Abete, A.B. Crujeiras, M. Cuervo, L. Goni, A. Marti, M.A. Martinez-Gonzalez, M.J. Moreno-Aliaga, S. Navas-Carretero, R. San Cristobal, J.L. Santos, and M.A. Zulet
Appetite, 2017
J. F. Pastor, M. Barbosa, F. J. De Paz, I. San José, M. Levanti, J. M. Potau, J. A. Vega, and R. Cabo
Anatomia, Histologia, Embryologia, 2017
Anthi A. Apostolopoulou, Saskia Köhn, Bernhard Stehle, Michael Lutz, Alexander Wüst, Lorena Mazija, Anna Rist, C. Giovanni Galizia, Alja Lüdke, and Andreas S. Thum
Frontiers in Cellular Neuroscience, 2016, Volume 10

Comments (0)

Please log in or register to comment.
Log in