Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 20, Issue 5


1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing

Ewa Jawień
  • Bioorganic Chemistry Group, Department of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adam Ząbek
  • Bioorganic Chemistry Group, Department of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stanisław Deja
  • Department of Analytical and Ecological Chemistry, Opole University, pl. Kopernika 11a, 45-040 Opole, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcin Łukaszewicz / Piotr Młynarz
  • Corresponding author
  • Bioorganic Chemistry Group, Department of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-05 | DOI: https://doi.org/10.1515/cmble-2015-0044


Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions.

The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes.

Keywords: Metabolomics; NMR spectroscopy; Poppy seeds; Rancidity; Brewing; Bioprocess quality control; System biology; Chemometrics


  • 1. Azca, N., Ozturk Kalender, B. and Kara, M. Investigation of turkish poppy seeds and seed oils. Chem. Nat. Compd. 40 (2004) 370-372.CrossrefGoogle Scholar

  • 2. Hagel, J.M., Weljie, A.M., Vogel, H.J. and Facchini, P.J. Quantitative 1H nuclear magnetic resonance metabolite profiling as a functional genomics platform to investigate alkaloid biosynthesis in opium poppy. Plant Physiol. 147 (2008) 1805-1821.Web of ScienceGoogle Scholar

  • 3. Matyášová, E., Novák, J. and Stránská, I. Production of morphine and variability of significant characters of Papaver somniferum. Plant Soil Environ. 57 (2011) 423-428.Google Scholar

  • 4. Krist, S., Stuebiger, G., Unterweger, H., Bandion, F. and Buchbauer, G. Analysis of volatile compounds and triglycerides of seed oils extracted from different poppy varieties (Papaver somniferum L.). J. Agric. Food Chem. 53 (2005) 8310-8316.CrossrefGoogle Scholar

  • 5. Singh, D., Singh, S.P. and Pandey, P. Production of both esters and biogas from Mexican poppy. Afr. J. Environ. Sci. Technol. 12 (2010) 866-871.Google Scholar

  • 6. Mannina, L., Soblev, A. and Viel, S. Liquid state 1H field NMR in food analysis. Prog. Nucl. Magn. Reson. Spectrosc. 66 (2012) 1-39.CrossrefGoogle Scholar

  • 7. Herrero, M., Simo, C., Garcia-Canas, V., Ibanez, E.and Cifuentes, A. Foodomics: ms-based strategies in modern food science and nutrition. Mass Spectrom. Rev. 31 (2012) 49-69.Web of ScienceCrossrefGoogle Scholar

  • 8. Kim, H.S., Kim, S.W., Park, Y.S., Kwon, S.Y., Liu, J.R., Joun,g H. and Jeon, J.H. Metabolic profiles of genetically modified potatoes using a combination of metabolite fingerprinting and multivariate analysis. Biotechnol. Bioprocess Eng. 14 (2009) 738-747.CrossrefWeb of ScienceGoogle Scholar

  • 9. Kim, S.W., Koo, B.C., Kim, J. and Liu, J.R. Metabolic discrimination of sucrose starvation from Arabidopsis cell suspension by 1H NMR based metabolomics. Biotechnol. Bioprocess Eng. 12 (2007) 653-661.Web of ScienceCrossrefGoogle Scholar

  • 10. Stewart, D., McDougall, G.J. and Sungurtas, J. Metabolomic approach to identifying bioactive compounds in berries: Advances toward fruit nutritional enhancement. Mol. Nutr. Food Res. 51 (2007) 645-651.Web of ScienceCrossrefGoogle Scholar

  • 11. Moing, A., Aharoni, A. and Biais, B. Extensive metabolic cross-talk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytologist. 190 (2011) 683-696.Web of ScienceGoogle Scholar

  • 12. Brescia, M.A., Sgaramella, A., Ghelli, S. and Sacco, A. 1H HR-MAS NMR and isotopic investigation of bread and flour samples produced in southern Italy. J. Sci. Food Agric. 83 (2003) 1463-1468.CrossrefGoogle Scholar

  • 13. Mazzei, P. and Piccolo, A. 1H HRMAS-NMR metabolomic to assess quality and traceability of mozzarella cheese from Campania buffalo milk. Food Chem. 132 (2012) 1620-1627.Web of ScienceGoogle Scholar

  • 14. Sacco, D., Brescia, M.A. and Sgaramella, A. Discrimination between Southern Italy and foreign milk samples using spectroscopic and analytical data. Food Chem. 114 (2009) 1559-1563.Web of ScienceCrossrefGoogle Scholar

  • 15. Consonni, R. and Cagliani, L.R. Ripening and geographical characterization of Parmigiano Reggiano cheese by 1H NMR spectroscopy. Talanta 76 (2008) 200-205.Web of ScienceCrossrefGoogle Scholar

  • 16. Shintu, L. and Caldarelli, S. High-resolution MAS NMR and chemometrics: characterization of the ripening of parmigiano reggiano cheese. J. Agric. Food Chem. 53 (2005) 4026−4031.CrossrefGoogle Scholar

  • 17. Schievano, E., Peggion, E. and Mammi, S. 1H nuclear magnetic resonance spectra of chloroform extracts of honey for chemometric determination of its botanical origin. J. Agric. Food Chem. 58 (2010) 57-65.Web of ScienceCrossrefGoogle Scholar

  • 18. Mannina, L., Cristinzio, M. and Sobolev, A.P. High-field nuclear magnetic resonance (nmr) study of truffles (Tuber aestivum vittadini). J. Agric. Food Chem. 52 (2004) 7988-7996.CrossrefGoogle Scholar

  • 19. Choe, S., Kim, S. and Lee, C. Species identification of Papaver by metabolite profiling. Forensic Sci. Int. 211 (2011) 51-60.Web of ScienceGoogle Scholar

  • 20. Bozan, B. and Temelli, F. Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils. Bioresour. Technol. 99 (2008) 6354-6359.Web of ScienceCrossrefGoogle Scholar

  • 21. Bravi, E., Marconi, O., Perretti, G. and Fantozzi, P. Influence of barley variety and malting process on lipid content of malt. Food Chem. 135 (2012) 1112-1117.Web of ScienceGoogle Scholar

  • 22. Leichtfried, D., Krist, S., Puchinger, L., Messner, K. and Buchbauer, G. Investigations of the natural microflora of poppy seeds (Papaver somniferum) and hazelnut kernels (Corylus avellana) including microbiological decomposition. Eur. Food Res. Technol. 219 (2004) 282-285.Google Scholar

  • 23. Freeman, I.P. Margarines and Shortenings, Ullmann’s (1887) United Kingdom.Google Scholar

  • 24. Quiroz-Moreno, A.L., Fontes-Gagiola, R., Rouzaud-Sandez, O. and Vidal- Quintanar, R.L. Evaluation of sensory rancidity of corn chips from nixtamalized dry corn masa produced at commercial level in México. CyTA - Journal of Food 11 (2013) 15-21.Web of ScienceCrossrefGoogle Scholar

  • 25. Bylesjo, M., Rantalainen, M., Cloarec, O., Nicholson, J.K., Holmes, E. and Trygg, J. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J. Chemom. 20 (2006) 341-351.CrossrefGoogle Scholar

  • 26. Tarola, A.M., Girelli, A.M. and Lorusso, S. High performance liquid chromatography determination of fatty acids in drying oils following lipase action. J. Chromatogr. Sci. 50 (2012) 294-300.CrossrefGoogle Scholar

  • 27. Goffman, F.D. and Bergman, C. Hydrolitic degradation of triacylglycerols and changes in fatty acid composition in rice bran during storage. Cereal Chem. 80 (2003) 459-461. CrossrefGoogle Scholar

  • 28. Ercolini, D., Ferrocino, I., Nasi, A., Ndagijimana, M., Vernocchi, P., La Storia, A., Laghi, L., Mauriello, G., Guerzoni, M.E. and Villani, F. Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions. Appl. Environ. Microbiol. 77 (2011) 7372-7381.CrossrefGoogle Scholar

  • 29. Bates, P.D., Stymne, S. and Ohlrogge, J. Biochemical pathways in seed oil synthesis. Curr. Opin. Plant Biol. 16 (2013) 358-364.CrossrefWeb of ScienceGoogle Scholar

  • 30. Ratajczak, E. and Pukacka, S. Decrease in beech (Fagus sylvatica) seed viability caused by temperature and humidity conditions as related to membrane damage and lipid composition. Acta Physiol. Plant. 27 (2005) 3-12.CrossrefGoogle Scholar

  • 31. Wang, T., Harp, T., Hammond, E.G., Burris, J.S. and Fehr, W.R. Seed physiological performance of soybeans with altered saturated fatty acid contents. Seed Sci. Res. 11 (2001) 93-97.CrossrefGoogle Scholar

  • 32. Bay, Y., Booth, T. and Romo, J.T. Imbibition temperature affects winterfat (Eurotia lanata (Pursh) Moq.) seed hydration and cold-hardiness response. J. Range Manage. 52 (1999) 271-274.CrossrefGoogle Scholar

  • 33. Akihiro, T., Koike, S., Tani, R., Tominaga, T., Watanabe, S., Iijima, Y., Aoki, K., Shibata, D., Ashihara, H., Matsukura, C., Akama, K., Fujimura, T. and Ezura, H. Biochemical mechanism on GABA accumulation during fruit development in tomato. Plant Cell Physiol. 49 (2008) 1378-1389.CrossrefGoogle Scholar

  • 34. Hayakawa, K., Kimura, M., Kasaha, K., Matsumoto, K. and Sansawa, H. Effect of -aminobutyric acid-enriched dairy production on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br. J. Nutr. 92 (2004) 411-417.CrossrefGoogle Scholar

  • 35. Bellisle, F. Glutamate and the UMAMI taste: sensory, metabolic, nutritional and behavioural considerations. A review of the literature published in the last 10 years. Neurosci. Biobehav. Rev. 23 (1999) 423-438.CrossrefGoogle Scholar

  • 36. Roper, S.D. Taste buds as peripheral chemosensory processors. Semin. Cell Dev. Biol. 24 (2013) 71-79. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2015-05-12

Accepted: 2015-10-13

Published Online: 2016-03-05

Published in Print: 2015-12-01

Citation Information: Cellular and Molecular Biology Letters, Volume 20, Issue 5, Pages 757–772, ISSN (Online) 1689-1392, DOI: https://doi.org/10.1515/cmble-2015-0044.

Export Citation

© University of Wroclaw, Poland.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Aswini Margasahayam and Yuganya Balraj
Journal of Food Process Engineering, 2018, Page e12677

Comments (0)

Please log in or register to comment.
Log in