Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 20, Issue 5

Issues

Somatic stem cell aging and malignant transformation – impact on therapeutic application

Marcela Kuniakova
  • Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lenka Oravcova
  • Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zuzana Varchulova-Novakova
  • Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Diana Viglaska
  • Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lubos Danisovic
  • Corresponding author
  • Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-05 | DOI: https://doi.org/10.1515/cmble-2015-0045

Abstract

Somatic stem cells possess unique properties of self-renewal and plasticity which make them promising candidates for use in tissue engineering and regenerative medicine, in addition to serving as efficient delivery vehicles in site-specific therapy. In the case of therapeutic application, it is essential to isolate and culture stem cells in vitro, to obtain them in sufficient quantities. Although long-term cultivation provides an adequate number of cells, it has been shown that this approach is associated with increased risk of transformation of cultured cells, which presents a significant biological hazard. This article reviews information about biological features and cellular events which occur during long-term cultivation of somatic stem cells, with respect to their safe utilization in potential clinical practice.

Keywords: Stem cells; Aging; Malignant transformation; Therapeutic application; Biological safety

References

  • 1. Satija, N.K., Gurudutta, G.U., Sharma, S., Afrin, F., Gupta, P., Verma, Y.K., Singh, V.K. and Tripathi, RP. Mesenchymal stem cells: molecular targets for tissue engineering. Stem Cells Dev. 16 (2007) 7-23.CrossrefGoogle Scholar

  • 2. Bunnell, B.A., Estes, B.T., Guilak, F. and Gimble, J.M. Differentiation of adipose stem cells. Metods. Mol. Biol. 450 (2008) 155-171.Google Scholar

  • 3. Yang, X.F., He, X., He, J., Zhang, L.H., Su, X.J., Dong, Z.Y., Xu, Y.J., Li, Y. and Li, Y.L. High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells. J. Biomed. Sci. 18 (2011) 59.CrossrefGoogle Scholar

  • 4. Wang, H.S., Hung, S.C. and Peng, S.T. Mesenchymal stem cells in the Wharton´s jelly of the human umbilical cord. Stem cells 22 (2004) 1330-1337.CrossrefGoogle Scholar

  • 5. Troyer, D.L. and Weis, M.L. Wharton´s jelly-derived cells are primitive stromal cells population. Stem cells 26 (2008) 591-599.CrossrefGoogle Scholar

  • 6. Gronthos, S., Mankani, M., Brahim, J., Robey, P.G. and Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 13625-13630.CrossrefGoogle Scholar

  • 7. Kovac, J. and Kovac, D. Neonatal teeth. Bratisl. Lek. Listy 112 (2011) 648-650.Google Scholar

  • 8. Atari, M., Gil-Recio, C., Fabregat, M., García-Fernández, D.A., Barajas, M., Carrasco, M., Jung, H.S., Hernández-Alfaro, F., Casals, N., Prosper, F., Ferrés, P.E. and Giner, L. Dental Pulp of the Third Molar: A new source of pluripotent-like stem cells. J. Cell Sci. 125 (2012) 3343-3356.CrossrefGoogle Scholar

  • 9. Kögler, G., Sensken, S., Airey, J.A., Trapp, T., Müschen, M., Feldhahn, N., Liedtke, S., Sorg, R.V., Fischer, J., Rosenbaum, C., Greschat, S., Knipper, A., Bender, J., Degistirici, O., Gao, J., Caplan, A.I., Colletti, E.J., Almeida- Porada, G., Müller, H.W., Zanjani, E. and Wernet, P. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J. Exp. Med. 200 (2004) 123-135.Google Scholar

  • 10. Motaln, H., Schichor, C. and Lah, T.T. Human mesenchymal stem cells and their use in cell-based therapies. Cancer 116 (2010) 2519-2530.Google Scholar

  • 11. Tonti, G.A. and Mannello, F. From bone marrow to therapeutic applications: different behaviour and genetic/epigenetic stability during mesenchymal stem cell expansion in autologous and foetal bovine sera? Int. J. Dev. Biol. 52 (2008) 1023-1032.CrossrefGoogle Scholar

  • 12. Mimeault, M. and Batra, S.K. Recent insights into the molecular mechanisms involved in aging and the malignant transformation of adult stem/progenitor cells and their therapeutic implications. Ageing Res. Rev. 8 (2009) 94-112.CrossrefGoogle Scholar

  • 13. Signer, R.A. and Morrison, S.J. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 12 (2013) 152-165.CrossrefGoogle Scholar

  • 14. Wang, X., Li, W., Zheng, J., Chen, Q., Zou, H., Ma, L., Lin, G., Huang, T., Huang, G. and Yang, L. Tumor suppressor gene alterations of spontaneously malignant transformed cells from human embryonic muscle in vitro. Oncol. Rep. 24 (2010) 555-561.Google Scholar

  • 15. Deng, Y. and Chang, S. Role of telomeres and telomerase in genomic instability, senescence and cancer. Lab. Invest. 87 (2007) 1071-1076.CrossrefGoogle Scholar

  • 16. Wilson, A. and Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 6 (2006) 93-106.CrossrefGoogle Scholar

  • 17. Wang, X. Discovery of molecular associations among aging, stem cells, and cancer based on gene expression profiling. Chin. J. Cancer 32 (2013) 155-161.CrossrefGoogle Scholar

  • 18. Yu, K.R. and Kang, K.S. Aging-related genes in mesenchymal stem cells: a mini-review. Gerontology 59 (2013) 557-563.CrossrefGoogle Scholar

  • 19. LaPak, K.M. and Burd, C.E. The molecular balancing act of p16INK4a in cancer and aging. Mol. Cancer Res. 12 (2014) 167-183.Google Scholar

  • 20. Zhu, Y., Song, X., Han, F., Li, Y., Wei, J. and Liu, X. Alteration of histone acetylation pattern during long-term serum-free culture conditions of human fetal placental mesenchymal stem cells. PLoS One 10 (2015) e0117068.Google Scholar

  • 21. Kinzler, K.W. and Vogelstein, B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386 (1997) 761-763.Google Scholar

  • 22. He, S., Nakada, D. and Morrison, S.J. Mechanisms of stem cell self-renewal. Annu. Rev. Cell Dev. Biol. 25 (2009) 377-406.Google Scholar

  • 23. Krishnamurthy, J., Torrice, C., Ramsey, M.R., Kovalev, G.I., Al-Regaiey, K., Su, L. and Sharpless, N.E. Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 114 (2004) 1299-1307.CrossrefGoogle Scholar

  • 24. Krishnamurthy, J., Ramsey, M.R., Ligon, K.L., Torrice, C., Koh, A., Bonner-Weir, S. and Sharpless, N.E. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443 (2006) 453-457.Google Scholar

  • 25. Janzen, V., Forkert, R., Fleming, H.E., Saito, Y., Waring, M.T., Dombkowski, D.M., Cheng, T., DePinho, R.A., Sharpless, N.E. and Scadden, D.T. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443 (2006) 421-426.Google Scholar

  • 26. Molofsky, A.V., Slutsky, S.G., Joseph, N.M., He, S., Pardal, R., Krishnamurthy, J., Sharpless, N.E. and Morrison, S.J. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443 (2006) 448-452.Google Scholar

  • 27. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120 (2005) 513-522. Google Scholar

  • 28. Signer, R.A., Montecino-Rodriguez, E., Witte, O.N. and Dorshkind, K. Aging and cancer resistance in lymphoid progenitors are linked processes conferred by p16Ink4a and Arf. Genes Dev. 22 (2008) 3115-3120.Google Scholar

  • 29. Rayess, H., Wang, M.B. and Srivatsan, E.S. Cellular senescence and tumor suppressor gene p16. Int. J. Cancer 130 (2012) 1715-1725.Google Scholar

  • 30. Qian, Y. and Chen, X. Tumor suppression by p53: making cells senescent. Histol. Histopathol. 25 (2010) 515-526.Google Scholar

  • 31. Qian, Y. and Chen, X. Senescence regulation by the p53 protein family. Methods Mol. Biol. 965 (2013) 37-61.Google Scholar

  • 32. Hollstein, M., Sidransky, D., Vogelstein, B. and Harris, C.C. p53 mutations in human cancers. Science 253 (1991) 49-53.Google Scholar

  • 33. Lee, J.Y., Nakada, D., Yilmaz, O.H., Tothova, Z., Joseph, N.M., Lim, M.S., Gilliland, D.G. and Morrison, S.J. mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 7 (2010) 593-605.CrossrefGoogle Scholar

  • 34. Tyner, S.D., Venkatachalam, S., Choi, J., Jones, S., Ghebranious, N., Igelmann, H., Lu, X., Soron, G., Cooper, B., Brayton, C., Park, S.H., Thompson, T., Karsenty, G., Bradley, A. and Donehower, L.A. p53 mutant mice that display early ageing-associated phenotypes. Nature 415 (2002) 45-53.Google Scholar

  • 35. Dumble, M., Moore, L., Chambers, S.M., Geiger, H., van Zant, G., Goodell, M.A. and Donehower, L.A. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood 109 (2007) 1736-1742.Google Scholar

  • 36. Gannon, H.S., Donehower, L.A., Lyle, S. and Jones, S.N. Mdm2-p53 signaling regulates epidermal stem cell senescence and premature aging phenotypes in mouse skin. Dev. Biol. 353 (2011) 1-9.Google Scholar

  • 37. Pekovic, V. and Hutchison, C.J. Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J. Anat. 213 (2008) 5-25.Google Scholar

  • 38. Scadden, D.T. The stem-cell niche as an entity of action. Nature 441 (2006) 1075-1079.Google Scholar

  • 39. Hutchison, C.J. and Worman, H.J. A type lamins: guardians of the soma? Nat Cell Biol. 6 (2004) 1062-1067.CrossrefGoogle Scholar

  • 40. Saeed, H. and Iqtedar, M. Stem cell function and maintenance - ends that matter: role of telomeres and telomerase. J. Biosci. 38 (2013) 641-649.CrossrefGoogle Scholar

  • 41. Hayflick, L. and Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25 (1961) 585-621.CrossrefGoogle Scholar

  • 42. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37 (1965) 614-636.CrossrefGoogle Scholar

  • 43. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I. and Pereira-Smith, O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U.S.A. 92 (1995) 9363-9367. CrossrefGoogle Scholar

  • 44. Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., Pfister, S., Eckstein, V. and Ho, A.D. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3 (2008) e2213.CrossrefGoogle Scholar

  • 45. Faragher, R.G. and Kipling, D. How might replicative senescence contribute to human ageing? Bioessays 20 (1998) 985-991.CrossrefGoogle Scholar

  • 46. Izadpanah, R., Kaushal, D., Kriedt, C., Tsien, F., Patel, B., Dufour, J. and Bunnell, B.A. Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res. 68 (2008) 4229-4238.CrossrefGoogle Scholar

  • 47. Rubio, D., Garcia-Castro, J., Martín, M.C., de la Fuente, R., Cigudosa, J.C., Lloyd, A.C. and Bernad, A. Spontaneous human adult stem cell transformation. Cancer Res. 65 (2005) 3035-3039.Google Scholar

  • 48. Rubio, D., Garcia, S., Paz, M.F., de la Cueva, T., Lopez-Fernandez, L.A., Lloyd, A.C., Garcia-Castro, J. and Bernad, A. Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS One 3 (2008) e1398.CrossrefGoogle Scholar

  • 49. Wang, Y., Huso, D.L., Harrington, J., Kellner, J., Jeong, D.K., Turney, J. and McNiece, I.K. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 7 (2005) 509-519.CrossrefGoogle Scholar

  • 50. Røsland, G.V., Svendsen, A., Torsvik, A., Sobala, E., McCormack, E., Immervoll, H., Mysliwietz, J., Tonn, J.C., Goldbrunner, R., Lønning, P.E., Bjerkvig, R. and Schichor, C. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 69 (2009) 5331-5339.CrossrefGoogle Scholar

  • 51. Beausejour, C.M. and Campisi, J. Ageing: balancing regeneration and cancer. Nature 443 (2006) 404-405.Google Scholar

  • 52. Knapowski, J., Wieczorowska-Tobis, K. and Witowski, J. Pathophysiology of aging. J. Physiol. Pharmacol. 53 (2002) 135-146.Google Scholar

  • 53. Krtolica, A. and Campisi, J. Integrating epithelial cancer, aging stroma and cellular senescence. Adv. Gerontol. 11 (2003) 109-116.Google Scholar

  • 54. Campisi, J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11 (2001) S27-S31.Google Scholar

  • 55. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P.Y. and Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 12072-12077.CrossrefGoogle Scholar

  • 56. Smogorzewska, A. and de Lange, T. Different telomere damage signaling pathways in human and mouse cells. EMBO J. 21 (2002) 4338-4348.CrossrefGoogle Scholar

  • 57. Palm, W. and de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42 (2008) 301-334.CrossrefGoogle Scholar

  • 58. Sahin, E. and Depinho, RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464 (2010) 520-528. Google Scholar

  • 59. Holysz, H., Lipinska, N., Paszel-Jaworska, A. and Rubis, B. Telomerase as a useful target in cancer fighting-the breast cancer case. Tumour Biol. 34 (2013) 1371-1380.CrossrefGoogle Scholar

  • 60. Kassem, M., Abdallah, B.M., Yu, Z., Ditzel, N. and Burns, J.S. The use of hTERT-immortalized cells in tissue engineering. Cytotechnology 45 (2004) 39-46.CrossrefGoogle Scholar

  • 61. Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., Coviello, G.M., Wright, W.E., Weinrich, S.L. and Shay, J.W. Specific association of human telomerase activity with immortal cells and cancer. Science 266 (1994) 2011-2015.Google Scholar

  • 62. Kim, N.W. Clinical implications of telomerase in cancer. Eur. J. Cancer 33 (1997) 781-786.CrossrefGoogle Scholar

  • 63. Shay, J.W. and Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33 (1997) 787-791.CrossrefGoogle Scholar

  • 64. Goodwin, H.S., Bicknese, A.R., Chien, S.N., Bogucki, B.D., Quinn, C.O. and Wall, D.A. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol. Blood Marrow Transplant. 7 (2001) 581-588.Google Scholar

  • 65. Stenderup, K., Justesen, J., Clausen, C. and Kassem, M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33 (2003) 919-926.CrossrefGoogle Scholar

  • 66. Saeed, H. and Iqtedar, M. Bone Marrow Stromal Cell (BMSC) and skeletal aging: role of telomerase enzyme. Pak. J. Pharm. Sci. 27 (2014) 321-333.Google Scholar

  • 67. Dick, J.E. Breast cancer stem cells revealed. Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 3547-3549.CrossrefGoogle Scholar

  • 68. Yu, Y., Park, Y.S., Kim, H.S., Kim, H.Y., Jin, Y.M., Jung, S.C., Ryu, K.H. and Jo, I. Characterization of long-term in vitro culture-related alterations of human tonsil-derived mesenchymal stem cells: role for CCN1 in replicative senescence-associated increase in osteogenic differentiation. J. Anat. 225 (2014) 510-518.Google Scholar

  • 69. Miura, M., Miura, Y., Padilla-Nash, H.M., Molinolo, A.A., Fu, B., Patel, V., Seo, B.M., Sonoyama, W., Zheng, J.J., Baker, C.C., Chen, W., Ried, T. and Shi, S. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24 (2006) 1095-1103.CrossrefGoogle Scholar

  • 70. Wu, W., He, Q., Li, X., Zhang, X., Lu, A., Ge, R., Zhen, H., Chang, A.E., Li, Q. and Shen, L. Long-term cultured human neural stem cells undergo spontaneous transformation to tumor-initiating cells. Int. J. Biol. Sci. 7 (2011) 892-901. CrossrefGoogle Scholar

About the article

Received: 2015-04-27

Accepted: 2015-10-07

Published Online: 2016-03-05

Published in Print: 2015-12-01


Citation Information: Cellular and Molecular Biology Letters, Volume 20, Issue 5, Pages 743–756, ISSN (Online) 1689-1392, DOI: https://doi.org/10.1515/cmble-2015-0045.

Export Citation

© University of Wroclaw, Poland. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in