Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 20, Issue 5


Death domain associated protein (Daxx), a multi-functional protein

Shuang-Yang Tang
  • Institute of Pathogenic Biology, University of South China
  • Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control
  • Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yan-Ping Wan
  • Corresponding author
  • Institute of Pathogenic Biology, University of South China
  • Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control
  • Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yi-Mou Wu
  • Institute of Pathogenic Biology, University of South China
  • Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control
  • Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-05 | DOI: https://doi.org/10.1515/cmble-2015-0048


Death domain associated protein (Daxx), a multi-functional protein, plays an important role in transcriptional regulation, cell apoptosis, carcinogenesis, anti-virus infection and so on. However, its regulatory mechanisms for both cell survival and apoptosis remain largely obscure. Our review of recent studies shows that Daxx has many interesting functional dualities and can provide a reference for further research on Daxx.

Keywords: Death domain associated protein; Function; Mutation; Expression; Localization; Interaction; Modification; Regulation; Transcription; Apoptosis


  • 1. Yang, X., Khosravi-Far, R., Chang, H.Y. and Baltimore, D. Daxx, a novel Fasbinding protein that activates JNK and apoptosis. Cell 89 (1997) 1067-1076.Google Scholar

  • 2. Chang, H.Y., Nishitoh, H., Yang, X., Ichijo, H. and Baltimore, D. Activation of apoptos is signal-regulating kinase 1 (ASK 1) by the adapter protein Daxx. Science 281 (1998) 1860-63.Google Scholar

  • 3. Lindsay, C.R., Morozov, V.M. and Ishov, A.M. PML NBs (ND10) and Daxx: from nuclear structure to protein function. Front Biosci. 13 (2008) 7132-7142.CrossrefGoogle Scholar

  • 4. Tang, M., Li, Y., Zhang, Y., Chen, Y., Huang, W., Wang, D., Zaug, A.J., Liu, D., Zhao, Y., Cech, T.R., Ma, W. and Songyang, Z. Disease mutant analysis identifies a new function of DAXX in telomerase regulation and telomere maintenance. J. Cell Sci. 128 (2015) 331-341.Google Scholar

  • 5. Kurihara, S., Hiyama, E., Onitake, Y., Yamaoka, E. and Hiyama, K. Clinical features of ATRX or DAXX mutated neuroblastoma. J. Pediatr. Surg. 49 (2014) 1835-1838.CrossrefGoogle Scholar

  • 6. Jiao, Y., Shi, C., Edi,l BH., de-Wilde, R.F., Klimstra, D.S., Maitra, A., Schulick, R.D., Tang, L.H., Wolfgang, C.L., Choti, M.A., Velculescu, V.E., Diaz, L.A.Jr., Vogelstein, B., Kinzler, K.W., Hruban, R.H. and Papadopoulos, N. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331 (2011) 1199-1203.Google Scholar

  • 7. Yuan, F., Shi, M., Ji, J., Shi, H., Zhou, C., Yu, Y., Liu, B., Zhu, Z. and Zhang, J. KRAS and DAXX/ATRX gene mutations are correlated with the clinicopathological features, advanced diseases, and poor prognosis in chinese patients with pancreatic neuroendocrine tumors. Int. J. Biol. Sci. 10 (2014) 957-965.CrossrefGoogle Scholar

  • 8. de-Wilde, R.F, Heaphy, C.M, Maitra, A., Meeker, A.K., Edil, B.H., Wolfgang, C.L., Ellison, T.A., Schulick, R.D., Molenaar, I.Q., Valk, G.D., Vriens, M.R, Borel-Rinkes, I.H, Offerhaus, G.J., Hruban, R.H. and Matsukuma, K.E. Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeresphenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors. Mod. Pathol. 25 (2012) 1033-1039.Google Scholar

  • 9. Marinoni, I,, Kurrer, A.S., Vassella, E., Dettmer, M., Rudolph, T., Banz, V., Hunger, F., Pasquinelli, S., Speel, E.J. and Perren, A. Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology 146 (2014) 453-460.Google Scholar

  • 10. Ishov, A.M., Sotnikov, A.G., Negorev, D., Vladimirova, O.V., Neff, N., Kamitani, T., Yeh, E.T., Strauss, J.F.3rd. and Maul, G.G. PML is critical for ND10 formation and recruits the PMLinteracting protein Daxx to this nuclear structure when modified by SUMO-1. J. Cell. Biol. 147 (1999) 221-234.Google Scholar

  • 11. Yeung, P.L., Chen, L.Y., Tsai, S.C., Zhang, A. and Chen, J.D. Daxx contains two nuclear localization signals and interacts with importin alpha3. J. Cell. Biochem. 103 (2008) 456-470.Google Scholar

  • 12. Sharma, R., Sharma, A., Dwivedi, S., Zimniak, P., Awasthi, S. and Awasthi, Y.C. 4-Hydroxynonenal self-limits Fas-mediated DISC-independent apoptosis by promoting export of Daxx from nucleus to cytosol and its binding to Fas. Biochemistry 47 (2008) 143-156.Google Scholar

  • 13. Tang, S.Y., Li, L., Li, Y.L., Liu, A.Y., Yu, M.J. and Wan, Y.P. Distribution and location of Daxx in cervical epithelial cells with high risk human papillomavirus positive. Diagn. Pathol. 9 (2014) e1.CrossrefGoogle Scholar

  • 14. Zizzi, A., Montironi, M.A., Mazzucchelli, R., Scarpelli, M., Lopez-Beltran, A., Cheng, L., Paone, N., Castellini, P. and Montironi, R. Immunohistochemical analysis of chromatin remodeler Daxx in high grade urothelial carcinoma. Diagn. Pathol. 8 (2013) e111.CrossrefGoogle Scholar

  • 15. Tanaka, M. and Kamitani, T. Cytoplasmic relocation of Daxx induced by Ro52 and FLASH. Histochem. Cell Biol. 134 (2010) 297-306.Google Scholar

  • 16. Newhart, A., Rafalska-Metcalf, I.U., Yang, T., Negorev, D.G. and Janicki, S.M. Single-cell analysis of Daxx and ATRX-dependent transcriptional repression. J. Cell. Sci. 125 (2012) 5489-5501. Google Scholar

  • 17. Tsai, K., Chan, L., Gibeault, R., Conn, K., Dheekollu, J., Domsic, J., Marmorstein, R., Schang, L.M. and Lieberman, P.M. Viral reprogramming of the Daxx histone H3.3 chaperone during early Epstein-Barr virus infection. J. Virol. 88 (2014) 14350-14363.CrossrefGoogle Scholar

  • 18. Tsai, K., Thikmyanova, N., Wojcechowskyj, J.A., Delecluse, H.J. and Lieberman, P.M. EBV tegument protein BNRF1 disrupts DAXX-ATRX to activate viral early gene transcription. PLoS Pathog. 7 (2011) e1002376.Google Scholar

  • 19. Li, L., Wen, J., Tuo, Q.H. and Liao, D.F. Effects of SUMOylation on the subcellular localization and function of DAXX. Sheng Li Xue Bao 65 (2013) 89-95.Google Scholar

  • 20. Naik, M.T., Chang, C.C., Naik, N.M., Kung, C.C., Shih, H.M. and Huang, T.H. NMR chemical shift assignments of a complex between SUMO-1 and SIM peptide derived from the C-terminus of Daxx. Biomol. NMR Assign. 5 (2011) 75-77.Google Scholar

  • 21. Sudharsan, R. and Azuma, Y. The SUMO ligase PIAS1 regulates UV-induced apoptosis by recruiting Daxx to SUMOylated foci. J. Cell Sci. 125 (2012) 5819-5829.Google Scholar

  • 22. Tang, J., Agrawal, T., Cheng, Q., Qu, L., Brewer, M.D., Chen, J. and Yang, X. Phosphorylation of Daxx by ATM contributes to DNA damage-induced p53 activation. PLoS One 8 (2013) e55813.Google Scholar

  • 23. Schreiner, S., Bürck, C., Glass, M., Groitl, P., Wimmer, P., Kinkley, S., Mund, A., Everett, R.D. and Dobner, T. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes. Nucleic Acids Res. 41 (2013) 3532-3550.Google Scholar

  • 24. DeNizio, J.E., Elsässer, S.J. and Black, B.E. DAXX co-folds with H3.3/H4 using high local stability conferred by the H3.3 variant recognition residues. Nucleic Acids Res. 42 (2014) 4318-4331.Google Scholar

  • 25. Delbarre, E., Ivanauskiene, K., Küntziger, T. and Collas, P. DAXXdependent supply of soluble (H3.3-H4) dimers to PML bodies pending deposition into chromatin. Genome Res. 23 (2013) 440-451.CrossrefGoogle Scholar

  • 26. Lacoste, N., Woolfe, A., Tachiwana, H., Garea, A.V., Barth, T., Cantaloube, S., Kurumizaka, H., Imhof, A. and Almouzni, G. Mislocalization of the centromeric histone variant CenH3/CENP-A in human cells depends on the chaperone DAXX. Mol. Cell. 53 (2014) 631-644.CrossrefGoogle Scholar

  • 27. Shalginskikh, N., Poleshko, A., Skalka, A.M. and Katz, R.A. Retroviral DNA methylation and epigenetic repression are mediated by the antiviral host protein Daxx. J. Virol. 87 (2013) 2137-2150.Google Scholar

  • 28. Yao, Z., Zhang, Q., Li, X., Zhao, D., Liu, Y., Zhao, K., Liu, Y., Wang, C., Jiang, M., Li, N. and Cao, X. Death domain-associated protein 6 (Daxx) selectively represses IL-6 transcription through histone deacetylase 1 (HDAC1)-mediated histone deacetylation in macrophages. J. Biol. Chem. 289 (2014) 9372-9379. Google Scholar

  • 29. Cantrell, S.R and Bresnahan, W.A. Interaction between the human cytomegalovirus UL82 gene product(pp71)and hDaxx regulates immediateearly gene expression and viral replication. J. Virol. 79 (2005) 7792-7802.Google Scholar

  • 30. Schreiner, S. and Wodrich, H. Virion factors that target Daxx to overcome intrinsic immunity. J. Virol. 87 (2013) 10412-10422.Google Scholar

  • 31. Khaiboullina, S.F, Morzunov, S.P, Boichuk, S.V, Palotás, A., St-Jeor, S., Lombardi, V.C. and Rizvanov, A.A. Death-domain associated protein-6 (DAXX) mediated apoptosis in hantavirus infection is counter-balanced by activation of interferon-stimulated nuclear transcription factors. Virology 443 (2013) 338-348.Google Scholar

  • 32. Netsawang, J., Noisakran, S., Puttikhunt, C., Kasinrerk, W., Wongwiwat, W., Malasit, P., Yenchitsomanus, P.T. and Limjindaporn, T. Nuclear localization of dengue virus capsid protein is required for DAXX interaction and apoptosis. Virus Res. 147 (2010) 275-283.Google Scholar

  • 33. Netsawang, J., Panaampon, J., Khunchai, S., Kooptiwut, S., Nagila, A., Puttikhunt, C., Yenchitsomanus, P.T. and Limjindaporn, T. Dengue virus disrupts Daxx and NF-κB interaction to induce CD137-mediated apoptosis. Biochem. Biophys. Res. Commun. 450 (2014) 1485-1491.Google Scholar

  • 34. Gaddy, D.F. and Lyles, D.S. Oncolytic vesicular stomatitis virus induces apoptosis via signaling through PKR, Fas, and Daxx. J. Virol. 81 (2007) 2792-2804.Google Scholar

  • 35. Fukuyo, Y., Kitamura, T., Inoue, M., Horikoshi, N.T., Higashikubo, R., Hunt, C.R., Usheva, A. and Horikoshi, N. Phosphorylation-dependent Lys63-linked polyubiquitination of Daxx is essential for sustained TNF-α- induced ASK1 activation. Cancer Res. 69 (2009) 7512-7517.Google Scholar

  • 36. Song, J.J. and Lee, Y.J. Role of the ASK1-SEK1-JNK1-HIPK1 signal in Daxx trafficking and ASK1 oligomerization. J. Biol. Chem. 278 (2003) 47245-47252.Google Scholar

  • 37. Yun, H.J., Yoon, J.H., Lee, J.K., Noh, K.T., Yoon, K.W., Oh, S.P., Oh, H.J., Chae, J.S., Hwang, S.G., Kim, E.H., Maul, G.G., Lim, D.S. and Choi, E.J. Daxx mediates activation-induced cell death in microglia by triggering MST1 signalling. EMBO J. 30 (2011) 2465-2476.Google Scholar

  • 38. Kwan, P.S., Lau, C.C., Chiu, Y.T., Man, C., Liu, J., Tang, K.D., Wong, Y.C. and Ling, M.T. Daxx regulates mitotic progression and prostate cancer predisposition. Carcinogenesis 34 (2013) 750-759.Google Scholar

  • 39. Kwon, T.R., Jeong, S.J., Lee, H.J., Lee, H.J., Sohn, E.J., Jung, J.H., Kim, J.H., Jung, D.B., Lu, J. and Kim, S.H. Reactive oxygen species-mediated activation of JNK and down-regulation of DAXX are critically involved in penta-O-galloyl-beta-d-glucose-induced apoptosis in chronic myeloid leukemia K562 cells. Biochem. Biophys. Res. Commun. 424 (2012) 530-537.Google Scholar

  • 40. Junn, E., Taniguchi, H., Jeong, B.S., Zhao, X., Ichijo, H. and Mouradian, M.M. Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proc. Natl. Acad. Sci. USA 102 (2005) 9691-9696.Google Scholar

  • 41. Pan, W.W., Yi, F.P., Cao, L.X., Liu, X.M., Shen, Z.F., Bu, Y.Q., Xu, Y., Fan, H.Y. and Song, F.Z. DAXX silencing suppresses mouse ovarian surface epithelial cell growth by inducing senescence and DNA damage. Gene 526 (2013) 287-294.Google Scholar

  • 42. Pan, W.W., Zhou, J.J., Liu, X.M., Xu, Y., Guo, L.J., Yu, C., Shi, Q.H. and Fan, H.Y. Death domain-associated protein DAXX promotes ovarian cancer development and chemoresistance. J. Biol. Chem. 288 (2013) 13620-13630.Google Scholar

  • 43. Kumar, N., Wethkamp, N., Waters, L.C., Carr, M.D. and Klempnauer, K.H. Tumor suppressor protein Pdcd4 interacts with Daxx and modulates the stability of Daxx and the Hipk2-dependent phosphorylation of p53 at serine 46. Oncogenesis 2 (2013) e37.Google Scholar

  • 44. Zhang, H., He, J., Li, J., Tian, D., Gu, L. and Zhou, M. Methylation of RASSF1A gene promoter is regulated by p53 and Daxx. FASEB J. 27 (2013) 232-242.Google Scholar

  • 45. Giovinazzi, S., Morozov, V.M., Summers, M.K., Reinhold, W.C. and Ishov, A.M. USP7 and Daxx regulate mitosis progression and taxane sensitivity by affecting stability of Aurora-A kinase. Cell Death Differ. 20 (2013) 721-731.CrossrefGoogle Scholar

  • 46. Li, C., Zhou, J., Wu, X., Tian, Y., Deng, J. and Liu, W. Induction of myelogenous leukemia cells with histone deacetylase inhibitors through downregulating the Daxx protein expression. J. Huazhong Univ. Sci. Technolog. Med. Sci. 29 (2009) 546-550.CrossrefGoogle Scholar

  • 47. Lin, D.Y., Lai, M.Z., Ann, D.K. and Shih, H.M. Promyelocytic leukemia protein (PML) functions as a glucocorticoid receptor co-activator by sequestering Daxx to the PML oncogenic domains (PODs) to enhance its transactivation potential. J. Biol. Chem. 278 (2003) 15958-15965.Google Scholar

  • 48. Chang, C.C., Naik, M.T., Huang, Y.S, Jeng, J.C., Liao, P.H., Kuo, H.Y., Ho, C.C., Hsieh, Y.L., Lin, C.H., Huang, N.J., Naik, N.M., Kung, C.C., Lin, S.Y., Chen, R.H., Chang, K.S., Huang, T.H. and Shih, H.M. Structural and functional roles of Daxx SIM phosphorylation in SUMO paralogselective binding and apoptosis modulation. Mol. Cell. 42 (2011) 62-74.CrossrefGoogle Scholar

  • 49. Xiong, G., Li, L., Sun, S., Li,T., Liao, D., Shu, C. and Tuo, Q. Subcellular localization of DAXX influence ox-LDL induced apoptosis in macrophages. Mol. Biol. Rep. 41 (2014) 7183-7190.CrossrefGoogle Scholar

  • 50. Dionne, K.R., Zhuang, Y., Leser, J.S., Tyler, K.L. and Clarke, P. Daxx upregulation within the cytoplasm of reovirus-infected cells is mediated by interferon and contributes to apoptosis. J. Virol. 87 (2013) 3447-3460.Google Scholar

  • 51. Lee, Y.S., Dayma, Y., Park, M.Y., Kim, K.I., Yoo, S.E. and Kim, E. Daxx is a key downstream component of receptor interacting protein kinase 3 mediating retinal ischemic cell death. FEBS Lett. 587 (2013) 266-271.Google Scholar

  • 52. Hwang, S., Song, S., Hong, Y.K., Choi, G., Suh, Y.S., Han, S.Y., Lee, M., Park, S.H.,Lee, J.H., Lee, S., Bang, S.M., Jeong, Y., Chung, W.J., Lee, I.S., Jeong, G., Chung, J. and Cho, K.S. Drosophila DJ-1 decreases neural sensitivity to stress by negatively regulating Daxx-like protein through dFOXO. PLOS Genet. 9 (2013) e1003412.Google Scholar

  • 53. Nurhayati, R.W, Ojima, Y., Nomura, N. and Taya, M. Promoted megakaryocytic differentiation of K562 cells through oxidative stress caused by near ultraviolet irradiation. Cell. Mol. Biol. Lett. 19 (2014) 590-600. Google Scholar

About the article

Received: 2015-04-20

Accepted: 2015-10-19

Published Online: 2016-03-05

Published in Print: 2015-12-01

Citation Information: Cellular and Molecular Biology Letters, Volume 20, Issue 5, Pages 788–797, ISSN (Online) 1689-1392, DOI: https://doi.org/10.1515/cmble-2015-0048.

Export Citation

© University of Wroclaw, Poland.Get Permission

Comments (0)

Please log in or register to comment.
Log in