Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 20, Issue 5


Ramipril inhibits high glucose-stimulated up-regulation of adhesion molecules via the ERK1/2 MAPK signaling pathway in human umbilical vein endothelial cells

Moo Hyun Kim / Hae Min Kang
  • Department of Ophthalmology, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon, Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chae-Eun Kim / Seongho Han / Sung-Whan Kim
Published Online: 2016-03-05 | DOI: https://doi.org/10.1515/cmble-2015-0053


Ramipril has recently been shown to have anti-atherogenic properties. However, the specific mechanisms underlying these effects remain unclear. The purpose of this study was to determine the effects of ramipril on induction of adhesion molecules in human umbilical vein endothelial cells (HUVECs) using high-glucose (HG) conditions and to investigate possible underlying molecular mechanisms. The effects of ramipril on expression of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1 production, and ERK phosphorylation were examined in HG-induced HUVECs with inhibitors targeting the mitogen-activated protein kinase (MAPK) signaling pathway. HG induced the expression of the adhesion molecules ICAM-1 and VCAM-1. Pretreatment with ramipril drastically inhibited ICAM-1 and VCAM-1 production in a time- and dose-dependent manner. Moreover, upon investigating the effects of ramipril on the MAPK/extracellular signal-regulated kinase (ERK) signaling pathway, we found that ramipril completely inhibited HG-induced phosphorylation of ERK1/2. ERK inhibitors completely prevented the inhibitory effect of HG. This study demonstrated that ramipril reduces HG-stimulated induction of ICAM-1 and VCAM-1 expression via MAPK signaling, which may be useful for inhibition of atherosclerosis.

Keywords: ACE inhibitor; Adhesion; Atherosclerosis; Cardiovascular risk; Endothelial cells; ERK pathway; Glucose; Inhibitor; MAPK; Ramipril


  • 1. Anand, S.S., Yusuf, S., Vuksan, V., Devanesen, S., Teo, K.K., Montague, P.A., Kelemen, L., Yi, C., Lonn, E., Gerstein, H., Hegele, R.A. and McQueen, M. Differences in risk factors, atherosclerosis, and cardiovascular disease between ethnic groups in Canada: the Study of Health Assessment and Risk in Ethnic groups (SHARE). Lancet 356 (2000) 279-284.Google Scholar

  • 2. Steinberger, J. and Daniels, S.R. Obesity, insulin resistance, diabetes, and cardiovascular risk in children: an American Heart Association scientific statement from the Atherosclerosis, Hypertension, and Obesity in the Young Committee (Council on Cardiovascular Disease in the Young) and the Diabetes Committee (Council on Nutrition, Physical Activity, and Metabolism). Circulation 107 (2003) 1448-1453.Google Scholar

  • 3. Ewence, A.E., Bootman, M., Roderick, H.L., Skepper, J.N., McCarthy, G., Epple, M., Neumann, M., Shanahan, C.M. and Proudfoot, D. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ. Res. 103 (2008) e28-34.Web of ScienceGoogle Scholar

  • 4. Boyle, E.M., Jr., Pohlman, T.H., Johnson, M.C. and Verrier, E.D. Endothelial cell injury in cardiovascular surgery: the systemic inflammatory response. Ann. Thorac. Surg. 63 (1997) 277-284.Google Scholar

  • 5. Galkina, E. and Ley, K. Vascular adhesion molecules in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27 (2007) 2292-2301.Google Scholar

  • 6. Pang, G., Couch, L., Batey, R., Clancy, R. and Cripps, A. GM-CSF, IL-1 alpha, IL-1 beta, IL-6, IL-8, IL-10, ICAM-1 and VCAM-1 gene expression and cytokine production in human duodenal fibroblasts stimulated with lipopolysaccharide, IL-1 alpha and TNF-alpha. Clin. Exp. Immunol. 96 (1994) 437-443.Google Scholar

  • 7. Mathew, J., Sleight, P., Lonn, E., Johnstone, D., Pogue, J., Yi, Q., Bosch, J., Sussex, B., Probstfield, J. and Yusuf, S. Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation 104 (2001) 1615-1621.Google Scholar

  • 8. Dzau, V.J., Bernstein, K., Celermajer, D., Cohen, J., Dahlof, B., Deanfield, J., Diez, J., Drexler, H., Ferrari, R., van Gilst, W., Hansson, L., Hornig, B., Husain, A., Johnston, C., Lazar, H., Lonn, E., Luscher, T., Mancini, J., Mimran, A., Pepine, C., Rabelink, T., Remme, W., Ruilope, L., Ruzicka, M., Schunkert, H., Swedberg, K., Unger, T., Vaughan, D. and Weber, M. The relevance of tissue angiotensin-converting enzyme: manifestations in mechanistic and endpoint data. Am. J. Cardiol. 88 (2001) 1L-20L.Google Scholar

  • 9. van den Meiracker, A.H., Man in 't Veld, A.J., Admiraal, P.J., Ritsema van Eck, H.J., Boomsma, F., Derkx, F.H. and Schalekamp, M.A. Partial escape of angiotensin converting enzyme (ACE) inhibition during prolonged ACE inhibitor treatment: does it exist and does it affect the antihypertensive response? J. Hypertens. 10 (1992) 803-812.Google Scholar

  • 10. Kim, S.W., Kim, C.E. and Kim, M.H. Flavonoids inhibit high glucoseinduced up-regulation of ICAM-1 via the p38 MAPK pathway in human vein endothelial cells. Biochem. Biophys. Res. Commun. 415 (2011) 602-607.Web of ScienceCrossrefGoogle Scholar

  • 11. Paplinska-Goryca, M., Nejman-Gryz, P., Chazan, R. and Grubek-Jaworska, H. The expression of the eotaxins IL-6 and CXCL8 in human epithelial cells from various levels of the respiratory tract. Cell. Mol. Biol. Lett. 18 (2013) 612-630.Google Scholar

  • 12. Kim, Y.S., Kang, H.J., Hong, M.H., Kang, W.S., Choe, N., Kook, H., Jeong, M.H. and Ahn, Y. Angiopoietin-like 4 is involved in the poor angiogenic potential of high glucose-insulted bone marrow stem cells. Korean Circ. J. 44 (2014) 177-183.Google Scholar

  • 13. Hong, Y.M., Kwon, J.H., Choi, S. and Kim, K.C. Apoptosis and inflammation associated gene expressions in monocrotaline-induced pulmonary hypertensive rats after bosentan treatment. Korean Circ. J. 44 (2014) 97-104.Google Scholar

  • 14. Rohrer, L., Hersberger, M. and von Eckardstein, A. High density lipoproteins in the intersection of diabetes mellitus, inflammation and cardiovascular disease. Curr. Opin. Lipidol. 15 (2004) 269-278.CrossrefGoogle Scholar

  • 15. Blankenberg, S., Barbaux, S. and Tiret, L. Adhesion molecules and atherosclerosis. Atherosclerosis 170 (2003) 191-203.Google Scholar

  • 16. Olin, J.W., Melia, M., Young, J.R., Graor, R.A. and Risius, B. Prevalence of atherosclerotic renal artery stenosis in patients with atherosclerosis elsewhere. Am. J. Med. 88 (1990) 46N-51N.Google Scholar

  • 17. Yusuf, S., Sleight, P., Pogue, J., Bosch, J., Davies, R. and Dagenais, G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N. Engl. J. Med. 342 (2000) 145-153.Google Scholar

  • 18. Sharma, A.M., Pischon, T. and Engeli, S. Effect of ramipril on cardiovascular events in high-risk patients. N. Engl. J. Med. 343 (2000) 65; author reply 66.Google Scholar

  • 19. Bosch, J., Yusuf, S., Gerstein, H.C., Pogue, J., Sheridan, P., Dagenais, G., Diaz, R., Avezum, A., Lanas, F., Probstfield, J., Fodor, G. and Holman, R.R. Effect of ramipril on the incidence of diabetes. N. Engl. J. Med. 355 (2006) 1551-1562.Google Scholar

  • 20. Seger, R. and Krebs, E.G. The MAPK signaling cascade. FASEB J. 9 (1995) 726-735.Google Scholar

  • 21. Zhang, W. and Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12 (2002) 9-18.CrossrefGoogle Scholar

  • 22. Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J. and Greenberg, M.E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270 (1995) 1326-1331.Google Scholar

  • 23. Landry, D.B., Couper, L.L., Bryant, S.R. and Lindner, V. Activation of the NF-kappa B and I kappa B system in smooth muscle cells after rat arterial injury. Induction of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Am. J. Pathol. 151 (1997) 1085-1095. Google Scholar

About the article

Received: 2015-09-03

Accepted: 2015-11-12

Published Online: 2016-03-05

Published in Print: 2015-12-01

Citation Information: Cellular and Molecular Biology Letters, Volume 20, Issue 5, Pages 937–947, ISSN (Online) 1689-1392, DOI: https://doi.org/10.1515/cmble-2015-0053.

Export Citation

© University of Wroclaw, Poland.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

A. Vallard, C. Rancoule, S. Espenel, M.-A. Garcia, J. Langrand-Escure, M.Y. He, M. Ben Mrad, A. El Meddeb Hamrouni, S. Ouni, J.-C. Trone, A. Rehailia-Blanchard, E. Guillaume, N. Vial, C. Riocreux, J.-B. Guy, and N. Magné
Radiotherapy and Oncology, 2018
Lin Yang, Jianlin Liu, and Guangyu Qi
Molecular Medicine Reports, 2017, Volume 16, Number 6, Page 8868
Ziyang Zhang, Wenpei Chen, Yandong Wang, Tianqin Xiong, Chenghao Zhou, Xiaolan Yao, and Baoqin Lin
Molecular Medicine Reports, 2017, Volume 16, Number 5, Page 7745
Yang Liu, Xiao-Lan Chen, Cang-Bao Xu, Lei Cao, Jie Lin, Gen Chen, and Jie Li
Vascular Pharmacology, 2017

Comments (0)

Please log in or register to comment.
Log in