Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 20, Issue 5


The effect of cultureware surfaces on functional and structural components of differentiated 3T3-L1 preadipocytes

Nela Pavlikova
  • Department of Biochemistry, Cell and Molecular Biology – Division of Cell and Molecular Biology, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Weiszenstein
  • Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Pala
  • Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petr Halada
  • Laboratory of Molecular Structure Characterization, Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ondrej Seda
  • Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Moustafa Elkalaf
  • Laboratory for Metabolism and Bioenergetics, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Trnka
  • Laboratory for Metabolism and Bioenergetics, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Kovar
  • Department of Biochemistry, Cell and Molecular Biology - Division of Cell and Molecular Biology, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Polak
  • Corresponding author
  • Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
  • Center of Toxicology and Health Safety, The National Institute of Public Health, Prague, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-05 | DOI: https://doi.org/10.1515/cmble-2015-0054


Experiments using cultured primary cells or cell lines are a routine in vitro approach used across multiple biological disciplines, However, the structural and functional influences of various cultureware materials on cultured cells is not clearly understood. Surface treatments of cultureware have proven to have profound effects on cell viability and proliferation. In this study, we investigated the impact of polystyrene and fluorocarbon cultureware dishes on the proteomic profile of differentiated 3T3-L1 preadipocytes. After expansion and differentiation of cells on appropriate cultureware dishes, cell lysates were separated using two-dimensional gel electrophoresis and proteins were visualized with Coomassie blue staining. Spots with the highest differential expression between the two culture conditions were subsequently analyzed using matrix-assisted laser desorption/ionization mass spectrometry and the identified proteins were subjected to pathway analysis. We observed that 43% of all spots were differentially expressed depending on the cultureware. Pathway analysis revealed that glucose metabolism, mitochondrial structure and cell differentiation, represented by 14-3-3 protein-mediated signaling and the mitochondrial inner membrane organizing system (MINOS), were significantly affected by cultureware material. These results indicate that cultureware material can have a profound effect on key adipocyte functional pathways. These effects modifications of the cells should be reflected in the design of in vitro experiments and interpretation of their results.

Keywords: Cell culture; Proteomics; Cultureware surface; Preadipocytes; 2-D electrophoresis; Mass spectrometry; Adipocyte; Lipids; Adipose tissue; Lipolysis


  • 1. Lastra, G. and Sowers, J.R. Obesity and cardiovascular disease: role of adipose tissue, inflammation, and the renin-angiotensin-aldosterone system. Horm. Mol. Biol. Clin. Investig. 15 (2013) 49-57. Google Scholar

  • 2. Song, X., Jousilahti, P., Stehouwer, C.D., Soderberg, S., Onat, A., Laatikainen, T., Yudkin, J.S., Dankner, R., Morris, R., Tuomilehto, J. and Qiao, Q. Cardiovascular and all-cause mortality in relation to various anthropometric measures of obesity in Europeans. Nutr. Metab. Cardiovasc. Dis. 25 (2015) 295-304.CrossrefGoogle Scholar

  • 3. Carmichael, A.R. Obesity as a risk factor for development and poor prognosis of breast cancer. BJOG 113 (2006) 1160-1166.CrossrefGoogle Scholar

  • 4. Hong, S., Cai, Q., Chen, D., Zhu, W., Huang, W. and Li, Z. Abdominal obesity and the risk of colorectal adenoma: a meta-analysis of observational studies. Eur. J. Cancer Prev. 21 (2012) 523-531. CrossrefGoogle Scholar

  • 5. Bluher, M. and Mantzoros, C.S. From leptin to other adipokines in health and disease: Facts and expectations at the beginning of the 21st century. Metabolism 64 (2015) 131-145.CrossrefGoogle Scholar

  • 6. Northcott, J.M., Yeganeh, A., Taylor, C.G., Zahradka, P. and Wigle, J.T. Adipokines and the cardiovascular system: mechanisms mediating health and disease. Can. J. Physiol. Pharmacol. 90 (2012) 1029-1059.CrossrefGoogle Scholar

  • 7. Jones, E. and Schafer, R. Biological differences between native and cultured mesenchymal stem cells: implications for therapies. Methods Mol. Biol. 1235 (2015) 105-120.Google Scholar

  • 8. Pfeiffer, E., Kegel, V., Zeilinger, K., Hengstler, J.G., Nussler, A.K., Seehofer, D. and Damm, G. Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells. Exp. Biol. Med. (Maywood) 240 (2015) 645-656.Google Scholar

  • 9. Amstein, C.F. and Hartman, P.A. Adaptation of plastic surfaces for tissue culture by glow discharge. J. Clin. Microbiol. 2 (1975) 46-54.Google Scholar

  • 10. van Kooten, T.G., Spijker, H.T. and Busscher, H.J. Plasma-treated polystyrene surfaces: model surfaces for studying cell-biomaterial interactions. Biomaterials 25 (2004) 1735-1747.CrossrefGoogle Scholar

  • 11. Ramsey, W.S., Hertl, W., Nowlan, E.D. and Binkowski, N.J. Surface treatments and cell attachment. In Vitro 20 (1984) 802-808.Google Scholar

  • 12. Webb, K., Hlady, V. and Tresco, P.A. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J. Biomed. Mater. Res. 41 (1998) 422-430.Google Scholar

  • 13. Ramirez-Zacarias, J.L., Castro-Munozledo, F. and Kuri-Harcuch, W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 97 (1992) 493-497.CrossrefGoogle Scholar

  • 14. Nunnari, J.J., Zand, T., Joris, I. and Majno, G. Quantitation of oil red O staining of the aorta in hypercholesterolemic rats. Exp. Mol. Pathol. 51 (1989) 1-8.CrossrefGoogle Scholar

  • 15. Schneider, C.A., Rasband, W.S. and Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9 (2012) 671-675.CrossrefGoogle Scholar

  • 16. Dyballa, N. and Metzger, S. Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. J. Vis. Exp. 30 (2009). DOI: 10.3791/1431.Google Scholar

  • 17. Ruardy, T.G., Schakenraad, J.M., van der Mei, H.C. and Busscher, H.J. Adhesion and spreading of human skin fibroblasts on physicochemically characterized gradient surfaces. J. Biomed. Mater. Res. 29 (1995) 1415-1423.CrossrefGoogle Scholar

  • 18. Seo, J.H., Kakinoki, S., Inoue, Y., Nam, K., Yamaoka, T., Ishihara, K., Kishida, A. and Yui, N. The significance of hydrated surface molecular mobility in the control of the morphology of adhering fibroblasts. Biomaterials 34 (2013) 3206-3214.CrossrefGoogle Scholar

  • 19. Curtis, A.S., Forrester, J.V., McInnes, C. and Lawrie, F. Adhesion of cells to polystyrene surfaces. J. Cell Biol. 97 (1983) 1500-1506. CrossrefGoogle Scholar

  • 20. von der Malsburg,.K., Muller, J.M., Bohnert, M., Oeljeklaus, S., Kwiatkowska, P., Becker, T., Loniewska-Lwowska, A., Wiese, S., Rao, S., Milenkovic, D., Hutu, D.P., Zerbes, R.M., Schulze-Specking, A., Meyer, H.E., Martinou, J.C., Rospert, S., Rehling, P., Meisinger, C., Veenhuis, M., Warscheid, B., van der Klei, I.J., Pfanner, N., Chacinska, A. and van der Laan,M. Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev. Cell. 21 (2011) 694-707.Google Scholar

  • 21. Lemarie, A., Huc, L., Pazarentzos, E., Mahul-Mellier, A.L. and Grimm, S. Specific disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction. Cell Death Differ. 18 (2011) 338-349.CrossrefGoogle Scholar

  • 22. Taipale, M., Tucker, G., Peng, J., Krykbaeva, I., Lin, Z.Y., Larsen, B., Choi, H., Berger, B., Gingras, A.C. and Lindquist S. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 158 (2014) 434-448.CrossrefGoogle Scholar

  • 23. Klein, J.B., Barati, M.T., Wu, R., Gozal, D., Sachleben, L.R., Jr., Kausar, H., Trent, J.O., Gozal, E. and Rane, M.J. Akt-mediated valosin-containing protein 97 phosphorylation regulates its association with ubiquitinated proteins. J. Biol. Chem. 280 (2005) 31870-31881.Google Scholar

  • 24. Jin, J., Smith, F.D., Stark, C., Wells, C.D., Fawcett, J.P., Kulkarni, S., Metalnikov, P., O'Donnell, P., Taylor, P., Taylor, L., Zougman, A., Woodgett, J.R., Langeberg, L.K., Scott, J.D. and Pawson, T. Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr. Biol. 14 (2004) 1436-1450.CrossrefGoogle Scholar

  • 25. Etienne-Manneville, S. From signaling pathways to microtubule dynamics: the key players. Curr. Opin. Cell. Biol. 22 (2010) 104-111.CrossrefGoogle Scholar

  • 26. Aleyasin, H., Karuppagounder, S.S., Kumar, A., Sleiman, S., Basso, M., Ma, T., Siddiq, A., Chinta, S.J., Brochier, C., Langley, B., Haskew-Layton, R., Bane, S.L., Riggins, G.J., Gazaryan, I., Starkov, A.A., Andersen, J.K. and Ratan, R.R. Antihelminthic benzimidazoles are novel HIF activators that prevent oxidative neuronal death via binding to tubulin. Antioxid. Redox. Signal 22 (2015) 121-134.CrossrefGoogle Scholar

  • 27. Nechipurenko, I.V. and Broihier, H.T. FoxO limits microtubule stability and is itself negatively regulated by microtubule disruption. J. Cell. Biol. 196 (2012) 345-362.CrossrefGoogle Scholar

  • 28. Nakae, J., Kitamura, T., Kitamura, Y., Biggs, W.H., Arden, K.C. and Accili, D. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell. 4 (2003) 119-129.Google Scholar

  • 29. Munekata, K. and Sakamoto, K. Forkhead transcription factor Foxo1 is essential for adipocyte differentiation. In Vitro Cell Dev. Biol. Anim. 45 (2009) 642-651.Google Scholar

  • 30. Nakae, J., Cao, Y., Oki, M., Orba, Y., Sawa, H., Kiyonari, H., Iskandar, K., Suga, K., Lombes, M. and Hayashi, Y. Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure. Diabetes 57 (2008) 563-576. Google Scholar

  • 31. Rena, G., Prescott, A.R., Guo, S., Cohen, P. and Unterman, T.G. Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targetting. Biochem. J. 354 (2001) 605-612.Google Scholar

  • 32. Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C., Blenis, J. and Greenberg, M.E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96 (1999) 857-868.CrossrefGoogle Scholar

  • 33. Brunet, A., Kanai, F., Stehn, J., Xu, J., Sarbassova, D., Frangioni, J.V., Dalal, S.N., DeCaprio, J.A., Greenberg, M.E. and Yaffe, M.B. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell. Biol. 156 (2002) 817-828.Google Scholar

  • 34. Witzel, F., Maddison, L. and Bluthgen, N. How scaffolds shape MAPK signaling: what we know and opportunities for systems approaches. Front. Physiol. 3 (2012). DOI:10.3389/fphys.2012.00475CrossrefGoogle Scholar

  • 35. Perlson, E., Michaelevski, I., Kowalsman, N., Ben-Yaakov, K., Shaked, M., Seger, R., Eisenstein, M. and Fainzilber, M. Vimentin binding to phosphorylated Erk sterically hinders enzymatic dephosphorylation of the kinase. J. Mol. Biol. 364 (2006) 938-944.Google Scholar

  • 36. Dobson, M., Ramakrishnan, G., Ma, S., Kaplun, L., Balan, V., Fridman, R. and Tzivion, G. Bimodal regulation of FoxO3 by AKT and 14-3-3. Biochim. Biophys. Acta 1813 (2011) 1453-1464.Google Scholar

  • 37. Tzivion, G., Dobson, M. and Ramakrishnan, G. FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim. Biophys. Acta 1813 (2011) 1938-1945.Google Scholar

  • 38. Sakisaka, T., Ikeda, W., Ogita, H., Fujita, N. and Takai, Y. The roles of nectins in cell adhesions: cooperation with other cell adhesion molecules and growth factor receptors. Curr. Opin. Cell. Biol. 19 (2007) 593-602.CrossrefGoogle Scholar

  • 39. Ruoslahti, E. and Obrink, B. Common principles in cell adhesion. Exp. Cell. Res. 227 (1996) 1-11.Google Scholar

  • 40. Llopis-Hernandez, V., Rico, P., Moratal, D., Altankov, G. and Salmeron- Sanchez, M. Role of material-driven fibronectin fibrillogenesis in protein remodeling. Biores. Open Access 2 (2013) 364-373.Google Scholar

  • 41. Cary, L.A., Chang, J.F. and Guan, J.L. Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J. Cell. Sci. 109 (1996) 1787-1794.Google Scholar

  • 42. Frisch, S.M., Vuori, K., Ruoslahti, E. and Chan-Hui, P.Y. Control of adhesion-dependent cell survival by focal adhesion kinase. J. Cell. Biol. 134 (1996) 793-799.Google Scholar

  • 43. Salmeron-Sanchez, M., Rico, P., Moratal, D., Lee, T.T., Schwarzbauer, J.E. and Garcia A.J. Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials 32 (2011) 2099-2105.CrossrefGoogle Scholar

  • 44. Carisey, A. and Ballestrem, C. Vinculin, an adapter protein in control of cell adhesion signalling. Eur. J. Cell. Biol. 90 (2011) 157-163. CrossrefGoogle Scholar

  • 45. Arima, Y. and Iwata, H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed selfassembled monolayers. Biomaterials 28 (2007) 3074-3082.CrossrefGoogle Scholar

  • 46. Altankov, G., Richau, K. and Groth, T. The role of surface zeta potential and substratum chemistry for regulation of dermal fibroblasts interaction. Mat. wiss. u. Werkstofftech. 34 (2003) 1120-1128.CrossrefGoogle Scholar

  • 47. Nakao, A., Suzuki, Y. and Iwaki M. Water wettability and zeta-potential of polystyrene surface modified by Ne or Na implantation. J. Colloid. Interface Sci. 197 (1998) 257-262.CrossrefGoogle Scholar

  • 48. Barrias, C.C., Martins, M.C., Almeida-Porada, G., Barbosa, M.A., and Granja, P.L. The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers. Biomaterials 30 (2009) 307-316.CrossrefGoogle Scholar

  • 49. van Wachem, P.B., Beugeling, T., Feijen, J., Bantjes, A., Detmers, J.P. and van Aken, W.G. Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials 6 (1985) 403-408.CrossrefGoogle Scholar

  • 50. Biran, R., Noble, M.D. and Tresco, P.A. Characterization of cortical astrocytes on materials of differing surface chemistry. J. Biomed. Mater. Res. 46 (1999) 150-159.CrossrefGoogle Scholar

  • 51. Bohnert, J.L., Fowler, B.C., Horbett, T.A. and Hoffman, A.S. Plasma gas discharge deposited fluorocarbon polymers exhibit reduced elutability of adsorbed albumin and fibrinogen. J. Biomater. Sci. Polym. Ed. 1 (1990) 279-297.Google Scholar

  • 52. Fabrizius-Homan, D.J. and Cooper, S.L. A comparison of the adsorption of three adhesive proteins to biomaterial surfaces. J. Biomater. Sci. Polym. Ed. 3 (1991) 27-47.Google Scholar

  • 53. Faucheux, N., Schweiss, R., Lutzow, K., Werner, C., and Groth, T. Selfassembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25 (2004) 2721-2730.CrossrefGoogle Scholar

  • 54. Massia, S.P. and Hubbell, J.A. Covalent surface immobilization of Arg-Gly- Asp- and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates. Anal. Biochem. 187 (1990) 292-301.Google Scholar

  • 55. Ashby, F.M. Materials Selection in: Mechanical Design 3rd Edition, Elsevier, Oxford, 2004.Google Scholar

  • 56. Pietuch, A., Bruckner, B.R., Fine, T., Mey, I. and Janshoff, A. Elastic properties of cells in the context of confluent cell monolayers: impact of tension and surface area regulation. Soft Matter 9 (2013) 11490-11502.CrossrefGoogle Scholar

  • 57. Norde, W. and Lyklema, J. Why proteins prefer interfaces. J. Biomater. Sci. Polym. Ed. 2 (1991) 183-202.CrossrefGoogle Scholar

  • 58. Rowley, J.A., Madlambayan, G. and Mooney, D.J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20 (1999) 45-53.CrossrefGoogle Scholar

  • 59. Harasymiak-Krzyżanowska, I., Niedojadło, A., Karwat, J., Kotuła, L., Gil- Kulik, P., Sawiuk, M. and Kocki, J. Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications. Cell. Mol. Biol. Lett. 18 (2013) 479-493. Google Scholar

About the article

Received: 2015-08-23

Accepted: 2015-11-13

Published Online: 2016-03-05

Published in Print: 2015-12-01

Citation Information: Cellular and Molecular Biology Letters, Volume 20, Issue 5, Pages 919–936, ISSN (Online) 1689-1392, DOI: https://doi.org/10.1515/cmble-2015-0054.

Export Citation

© University of Wroclaw, Poland.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mélanie Minoves, Jessica Morand, Frédéric Perriot, Morgane Chatard, Brigitte Gonthier, Emeline Lemarié, Jean-Baptiste Menut, Jan Polak, Jean-Louis Pépin, Diane Godin-Ribuot, and Anne Briançon-Marjollet
American Journal of Physiology-Cell Physiology, 2017, Volume 313, Number 4, Page C460
Martin Weiszenstein, Martina Musutova, Andrea Plihalova, Katerina Westlake, Moustafa Elkalaf, Michal Koc, Antonin Prochazka, Jan Pala, Sumeet Gulati, Jan Trnka, and Jan Polak
Biochemical and Biophysical Research Communications, 2016, Volume 478, Number 2, Page 727

Comments (0)

Please log in or register to comment.
Log in