Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

See all formats and pricing
More options …
Volume 20, Issue 5


The effect of nicotine on the expressions of the α7 nicotinic receptor gene and Bax and Bcl-2 proteins in the mammary gland epithelial-7 breast cancer cell line and its relationship to drug resistance

Naghmeh Aali
  • Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
  • Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gholamreza Motalleb
  • Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
  • Center of Agricultural Biotechnology, University of Zabol, Zabol, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-05 | DOI: https://doi.org/10.1515/cmble-2015-0056


The binding of nicotine with nicotinic acetylcholine receptors (nAChRs) stimulates cell division and increases drug resistance in cancer. Experiments with specific inhibitors such as RNAi, hexamethonium, and α-bungarotoxin showed that α7 nicotinic receptor plays a key role in the proproliferation activity of nicotine. However, the mechanism of nicotine in the progress of breast cancer, the commonest malignancy in women, remains unknown. This study focuses on the effect of nicotine on the expressions of the α7 nicotinic receptor gene and Bax and Bcl-2 proteins in mammary gland epithelial-7 (MCF-7) breast cancer cells and its relationship to drug resistance. To evaluate the effect on drug resistance, human mammary gland epithelial adenocarcinomas from the MCF-7 line were exposed to 100 μl of nicotine at a concentration of 9.2 mg/ml for varying periods of time. Then, the cells were treated with 1, 2, 3 or 5 μl/ml of doxorubicin, either with or without the continued presence of nicotine. Cell viability was determined using the MTT assay. The biochemical parameters of apoptosis, including the expressions of Bax, Bcl-2 and α7 nicotinic receptor proteins were determined via western blotting, and the α7 nicotinic receptor gene expression level was assessed via real-time qPCR using the 2-ΔΔCt method. Differences in the target gene expression levels were evaluated with ANOVA with p ≤ 0.05 considered significant. We found a novel and effective signaling pathway of nicotine in the MCF-7 breast cancer cell line. The levels of α7 nicotinic receptor and Bcl-2 protein increased but the Bax protein levels decreased, while the α7 nicotinic receptor gene expression level was not significantly different compared with the control.

Keywords: Breast cancer; α7 nicotinic receptor gene; Bcl-2; Bax; Doxorubicin; Apoptosis; Drug resistance; MTT assay; qPCR; Western blotting


  • 1. Armitage, A.K., Dollery, C.T., George, C.F., Houseman, T.H., Lewis, P.J. and Turner P.J. Absorption and metabolism of nicotine from cigarettes. Br. Med. J. 4 (1975) 313-316. Google Scholar

  • 2. Atlanta, G.A. How tobacco smoke causes disease: The biology and behavioral basis for smoking attributable. in: A Report of the Surgeon General (U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health), 2010, Available from: http://www.ncbi.nlm.nih.gov/books/NBK53017.Google Scholar

  • 3. Lai, C.S. and Pan, M.H. Chemopreventive effects of natural dietary compounds on smoking-induced tumorigenesis. J. Exp. Clin. Med. 3 (2011) 262-271.Google Scholar

  • 4. Coughlin, S.S. and Ekwueme, D.U. Breast cancer as a global health concern. J. Cancer Epidemiol. 33 (2009) 315-318. DOI: 10.1016/j.canep.2009. 10.003.CrossrefGoogle Scholar

  • 5. Schuller, H.M., Plummer, H.K. and Jull, B.A. Receptor-mediated effects of nicotine and its nitrosated derivative NNK on pulmonary neuroendocrine cells. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 270 (2003) 51-58.Google Scholar

  • 6. Shen, Y.C., Chang, C.J., Hsu, C., Cheng, C.C., Chiu, C.F. and Cheng, A.L. Significant difference in the trends of female breast cancer incidence between Taiwanese and Caucasian Americans: implications from age-period-cohort analysis. Cancer Epidemiol. Biomarkers Prev. 14 (2005) 1986-1990.CrossrefGoogle Scholar

  • 7. Guo, J., Ibaragi, S., Zhu, T., Luo, L.Y., Hu, G.F., Huppi, P.S. and Chen, C.Y. Nicotine promotes mammary tumor migration via a signaling cascade involving protein kinase C and CDC42. J. Cancer Res. 68 (2008) 8473-8481.CrossrefGoogle Scholar

  • 8. Gross, A. McDonnell, J.M. and Korsmeyer, S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13 (1999) 1899-1911.CrossrefGoogle Scholar

  • 9. Suzuki, M., Youle, R.J. and Tjandra, N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103 (2000) 645-654. DOI:10.1016/S0092-8674(00)00167-7.CrossrefGoogle Scholar

  • 10. Wessler, I. and Kirkpatrick, C.J. Acetylcholine beyond neurons: the nonneuronal cholinergic system in humans. Br. J. Pharmacol. 154 (2008) 1558-1571. DOI: 10.1038/bjp.2008.185.CrossrefWeb of ScienceGoogle Scholar

  • 11. Groeger, A.M., Esposito, V., Cassandro, R., Baldi, G., Rossiello, L., De Luca, L., Kadletz, M. and Kaiser, H.E. A model of BAX gene delivery to human lung cancer. Anticancer Res. 21 (2001) 3627-3630.Google Scholar

  • 12. Goping, I. S., Gross, A., Lavoie, J.N., Nguyen, M., Jemmerson, R., Roth, K., Korsmeyer, S.J. and Shore, G.C. Regulated targeting of BAX to mitochondria. J. Cell Biol. 143 (1998) 207-215.Google Scholar

  • 13. Smaili, S.S. Hsu, Y.T., Carvalho, A.C.P., Rosenstock, T.R., Sharpe, J.C., Youle, R.J. Mitochondria, calcium and pro-apoptotic proteins as mediators in cell death signaling. Braz. J. Med. Biol. Res. 36 (2003) 183-190.Google Scholar

  • 14. Eldering, E. and Vanlier, R.A. B-cell antigen receptor-induced apoptosis: looking for clues. Immunol. Lett. 96 (2005) 187-194. DOI: 10.1016/j.imlet. 2004.09.003.CrossrefGoogle Scholar

  • 15. Nechushtan, A., Smith, C.L., Lamensdorf, I., Yoon, S.H. and Youle, R.J. Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J. Cell Biol. 153 (2001) 1265-1276.Google Scholar

  • 16. Zhou, Y., Gu, X., Ashayeri, E., Zhang, R. and Sridhar, R. Nicotine decreases the cytotoxicity of doxorubicin towards MCF-7 and KB-3.1 human cancer cells in culture. J. Natl. Med. Assoc. 99 (2007) 319-327. Google Scholar

  • 17. Dasgupta, P., Kinkade, R., Joshi, B., Decook, C., Haura, E. and Chellappan, S. Nicotine inhibits apoptosis induced by chemotherapeutic drugs by upregulating XIAP and survivin. Proc. Natl. Acad. Sci. USA 103 (2006) 6332-6337.CrossrefGoogle Scholar

  • 18. Brown, J.M. and Attardi, L.D. The role of apoptosis in cancer development and treatment response. Nat. Rev. Cancer. 5 (2005) 231-237. DOI:10.1038/ nrc1560.CrossrefGoogle Scholar

  • 19. Steel, G.G. The case against apoptosis. Acta Oncol. 40 (2001) 968-975.CrossrefGoogle Scholar

  • 20. Hung, C.S., Peng, Y.J., Wei, P.L., Lee, C.H., Su, H.Y., Ho, Y.S. and Chang, Y.J. The alpha9 nicotinic acetylcholine receptor is the key mediator in nicotineenhanced cancer metastasis in breast cancer cells. J. Exp. Clin. Med. 3 (2011) 283-292.Google Scholar

  • 21. Wei, P.L., Chang, Y.J., Ho, Y.S., Lee, C.H., Yang, Y.Y. An, J. and Lin, S.Y. Tobacco-specific carcinogen enhances colon cancer cell migration through α7-nicotinic acetylcholine receptor. Ann. Sur. 249 (2009) 978-985.Google Scholar

  • 22. Lien, Y.C., Wang, W.L., Kuo, J., Liu, J.J., Wei, P.L., Ho, Y.S. and Chang,Y.J. Nicotine promotes cell migration through alpha7 nicotinic acetylcholine receptor in gastric cancer cells. Ann. Surg. Oncol. 18 (2011) 2671-2679.Web of ScienceGoogle Scholar

  • 23. Zhou, Y., Gu, X., Ashayeri, E., Zhang, R. and Sridhar, R. Nicotine decreases the cytotoxicity of doxorubicin towards MCF-7 and KB-3.1 human cancer cells in culture. J. Natl. Med Assoc. 99 (2007) 319 319-327.Google Scholar

  • 24. Lee, C.H., Huang, C.S., Chen, C.S., Tu, S.H., Wang, Y.J., Chang, Y.J. and Ho, Y.S. Overexpression and activation of the α9-nicotinic receptor during tumorigenesis in human breast epithelial cells. J. Natl. Cancer Inst. 22 (2010). DOI:10.1093/jnci/djq300.Web of ScienceCrossrefGoogle Scholar

  • 25. Tu, S.H., Ku, C.Y., Ho, C.T., Chen, C.S., Huang, C.S., Lee, C.H., Chen, L.C., Pan, M.H., Chang, H.W., Chang, CH., Chang, Y.J., Wei, P.L., Wu, C.H. and Ho, Y.S Tea polyphenol (-) - epigallo catechin-3-gallate inhibits nicotine- and estrogen-induced α9-nicotinic acetylcholine receptor upregulation in human breast cancer cells. Mol. Nutr Food Res. 55 (2011) 455-466. DOI:10.1002/mnfr.201000254.Web of ScienceCrossrefGoogle Scholar

  • 26. Chang, Y.J., Tai, C.J., Kuo, L.J., Wei, P.L., Liang, H.H., Liu, T.Z. and Huang, M.T. Glucose-regulated protein 78 (GRP78) mediated the efficacy to curcumin treatment on hepatocellular carcinoma.Ann. Surg. Oncol. 18 (2011) 2395-2403. DOI: 10.1245/s10434-011-1597-3.CrossrefGoogle Scholar

  • 27. Osta, W.A., El-Osta, M.A., Pezhman, E.A., Raad, R., Ferguson, A.K., Mckelvey, G.M. and Perov, S. Nicotinic acetylcholine receptor gene expression is altered in burn patients. Anesth. Analg. 110 (2010) 1355-1359.CrossrefWeb of ScienceGoogle Scholar

  • 28. Kanyar, B. and Erödi, J. Program to estimate parameters of linear systems without numerical differentiation. Comput. Methods Programs Biomed. 8 (1978) 135-140. DOI:10.1016/0010-468X(78)90048-X.CrossrefGoogle Scholar

  • 29. Lindstrom, J. Nicotinic acetylcholine receptors in health and disease. Mol. Neurobiol. 15 (1997) 193-222. CrossrefGoogle Scholar

  • 30. Karnath, B. Smoking cessation. Am. J. Med. 112 (2002) 399-405. DOI: dx.doi.org/10.1016/S0002-9343(01)01126-3.CrossrefGoogle Scholar

  • 31. Arredondo, J., Chernyavsky, A.I., Jolkovsky, D.L., Pinkerton, K.E. and Grando, S.A. Receptor-mediated tobacco toxicity: acceleration of sequential expression of α5 and α7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke. FASEB J. 22 (2008) 1356-1368. DOI:10.1096/ fj.07-9965.com.Web of ScienceGoogle Scholar

  • 32. Plati, J., Bucur, O. and Khosravi-Far, R. Dysregulation of apoptotic signaling in cancer: molecular mechanisms and therapeutic opportunities. J. Cell Biochem. 104 (2008) 1124-1149. DOI: 10.1002/jcb.21707.CrossrefWeb of ScienceGoogle Scholar

  • 33. Mai, H., May, W.S., Gao, F., Jin, Z. and Deng, X. A functional role for nicotine in Bcl2 phosphorylation and suppression of apoptosis. J. Biol. Chem. 278 (2003) 1886-1891.Google Scholar

  • 34. Assis, G.F., Ceolin, D.S., Marques, M.E., Salvadori, D.M. and Ribeiro, D.A. Cigarette smoke affects apoptosis in rat tongue mucosa: role of bcl-2 gene family. J. Mol. Histol. 36 (2005) 483-489.Google Scholar

  • 35. Daub, H., Weiss, F.U., Wallasch, C. and Ullrich, A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379 (1996) 557-560. DOI:10.1038/379557a0.CrossrefGoogle Scholar

  • 36. Hitesh, J., Josyula, V.R., Vasanth, R.P., Raghu, C.H. and Sagar, G. A nanoformulation of siRNA and its role in cancer therapy: In vitro and in vivo evaluation. Cell. Mol. Biol. Lett. 18 (2013) 120-136. DOI: 10.2478/ s11658-012-0043-2.CrossrefGoogle Scholar

  • 37. Arredondo, J., Chernyavsky, A.I., Jolkovsky, D.L., Pinkerton, K.E. and Grando, S.A. Receptor-mediated tobacco toxicity: acceleration of sequential expression of α5 and α7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke. FASEB J. 22 (2008) 1356-1368. DOI:10.1096/ fj.07-9965.comCrossrefWeb of ScienceGoogle Scholar

  • 38. Martin, D.S., Bertino, J.R. and Koutcher, J.A. ATP depletion+ pyrimidine depletion can markedly enhance cancer therapy: fresh insight for a new approach. Cancer Res. 60 (2000) 6776-6783.Google Scholar

  • 39. Bergers, L. and Benjamin, E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3 (2003) 401-410.CrossrefGoogle Scholar

  • 40. Xin, M. and Deng, X. Nicotine inactivation of the proapoptotic function of Bax through phosphorylation. J. Biol. Chem. 280 (2005) 10781-10789.Google Scholar

  • 41. Lin, Y.S., Kikuchi, K., Tamakoshi, K., Wakai, K., Kondo, T., Niwa, Y., Yatsuya, H., Nishio, K., Suzuki, S., Tokudome, S., Yamamoto, A., Toyoshima, H., Mori, M., Tamakoshi, A. Active smoking, passive smoking, and breast cancer risk: findings from the Japan Collaborative Cohort Study for Evaluation of Cancer Risk. J. Epidemiol. 18 (2008) 77-83. DOI:doi.org/10.2188/jea.18.77.CrossrefGoogle Scholar

  • 42. Lewis, B.P., Burge, C.B. and Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120 (2005) 15-20. DOI:10.1016/j.cell.2004.12.035. CrossrefGoogle Scholar

  • 43. Iorio, M.V. and Croce, C.M. MicroRNAs in cancer: small molecules with a huge impact. J. Clin. Oncol. 27 (2009) 5848-5856. DOI:10.1200/JCO. 2009.24.0317.CrossrefGoogle Scholar

  • 44. Wang, J., Lu, M., Qiu, C. and Cui, Q. TransmiR: a transcription factor- microRNA regulation database. Nucleic Acids Res. 38 (2010) 119-122. DOI:10.1093/nar/gkp803.CrossrefGoogle Scholar

  • 45. Calin, G.A. and Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6 (2006) 857-866. DOI:10.1038/nrc1997. CrossrefGoogle Scholar

About the article

Received: 2015-06-08

Accepted: 2015-12-15

Published Online: 2016-03-05

Published in Print: 2015-12-01

Citation Information: Cellular and Molecular Biology Letters, Volume 20, Issue 5, Pages 948–964, ISSN (Online) 1689-1392, DOI: https://doi.org/10.1515/cmble-2015-0056.

Export Citation

© University of Wroclaw, Poland.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Shiyan Gu, Yanhao Lai, Hongyu Chen, Yuan Liu, and Zunzhen Zhang
Scientific Reports, 2017, Volume 7, Number 1

Comments (0)

Please log in or register to comment.
Log in