Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Complex Manifolds

Ed. by Fino, Anna Maria

1 Issue per year


CiteScore 2017: 0.39

SCImago Journal Rank (SJR) 2017: 0.260
Source Normalized Impact per Paper (SNIP) 2017: 0.660

Mathematical Citation Quotient (MCQ) 2016: 0.67


Emerging Science

Open Access
Online
ISSN
2300-7443
See all formats and pricing
More options …

Some applications of the theory of harmonic integrals

Shin-ichi Matsumura
  • Corresponding author
  • Mathematical Institute, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-07-08 | DOI: https://doi.org/10.1515/coma-2015-0003

Abstract

In this survey, we present recent techniques on the theory of harmonic integrals to study the cohomology groups of the adjoint bundle with the multiplier ideal sheaf of singular metrics. As an application, we give an analytic version of the injectivity theorem.

Keywords: Injectivity theorems; Singular metrics; Multiplier ideal sheaves; The theory of harmonic integrals; L2-methods

MSC: 14F18; 32L10; 32L20

References

  • [1] J.-P. Demailly. Analytic methods in algebraic geometry. Surveys of Modern Mathematics 1, International Press, Somerville, Higher Education Press, Beijing, (2012). Google Scholar

  • [2] J.-P. Demailly. Complex analytic and differential geometry. Lecture Notes on the web page of the author. Google Scholar

  • [3] J.-P. Demailly. Estimations L2 pour l’opérateur @ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète. Ann. Sci. École Norm. Sup(4). 15 (1982), no. 3, 457–511. Google Scholar

  • [4] J.-P. Demailly, T. Peternell, M. Schneider. Pseudo-effective line bundles on compact Kähler manifolds. Internat. J. Math. 12 (2001), no. 6, 689–741. CrossrefGoogle Scholar

  • [5] I. Enoki. Kawamata-Viehweg vanishing theorem for compact Kähler manifolds. Einstein metrics and Yang-Mills connections (Sanda, 1990), 59–68. Google Scholar

  • [6] H. Esnault, E. Viehweg. Lectures on vanishing theorems. DMV Seminar, 20. Birkhäuser Verlag, Basel, (1992). Google Scholar

  • [7] O. Fujino. A transcendental approach to Kollár’s injectivity theorem. Osaka J. Math. 49 (2012), no. 3, 833–852. Google Scholar

  • [8] O. Fujino. A transcendental approach to Kollár’s injectivity theorem II. J. Reine Angew. Math. 681 (2013), 149–174. Google Scholar

  • [9] Y. Gongyo, S. Matsumura. Versions of injectivity and extension theorems. Preprint, arXiv:1406.6132v2. Google Scholar

  • [10] J. Kollár. Higher direct images of dualizing sheaves. I. Ann. of Math. (2) 123 (1986), no. 1, 11–42. Google Scholar

  • [11] S. Matsumura. An injectivity theorem with multiplier ideal sheaves of singular metrics with transcendental singularities. Preprint, arXiv:1308.2033v2. Google Scholar

  • [12] S. Matsumura. A Nadel vanishing theorem via injectivity theorems. Math. Ann. 359 (2014) no.4, 785–802. Web of ScienceGoogle Scholar

  • [13] S. Matsumura. A Nadel vanishing theorem for metrics with minimal singularities on big line bundles. Adv. in Math. 359 (2015), 188–207 Web of ScienceGoogle Scholar

  • [14] T. Ohsawa. On a curvature condition that implies a cohomology injectivity theorem of Kollár-Skoda type. Publ. Res. Inst. Math. Sci. 41 (2005), no. 3, 565–577. Google Scholar

  • [15] K. Takegoshi. On cohomology groups of nef line bundles tensorized with multiplier ideal sheaves on compact Kähler manifolds. Osaka J. Math. 34 (1997), no. 4, 783–802. Google Scholar

  • [16] S. G. Tankeev. On n-dimensional canonically polarized varieties and varieties of fundamental type.Math. USSR-Izv. 5 (1971), no. 1, 29–43.CrossrefGoogle Scholar

About the article

Received: 2014-11-25

Accepted: 2015-06-03

Published Online: 2015-07-08


Citation Information: Complex Manifolds, Volume 2, Issue 1, ISSN (Online) 2300-7443, DOI: https://doi.org/10.1515/coma-2015-0003.

Export Citation

© 2015 Shin-ichi Matsumura. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in