Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Complex Manifolds

Ed. by Fino, Anna Maria

Covered by Web of Science - Emerging Sources Citation Index and Zentralblatt Math (zbMATH)

CiteScore 2018: 0.64

SCImago Journal Rank (SJR) 2018: 0.643
Source Normalized Impact per Paper (SNIP) 2018: 0.812

Mathematical Citation Quotient (MCQ) 2018: 0.61

Open Access
See all formats and pricing
More options …

Compact lcK manifolds with parallel vector fields

Andrei Moroianu
  • Corresponding author
  • Université de Versailles-St Quentin, Laboratoire de Mathématiques, UMR 8100 du CNRS, 45 avenue des États-Unis, 78035 Versailles, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-07-09 | DOI: https://doi.org/10.1515/coma-2015-0004


We show that for n > 2 a compact locally conformally Kähler manifold (M2n , g, J) carrying a nontrivial parallel vector field is either Vaisman, or globally conformally Kähler, determined in an explicit way by a compact Kähler manifold of dimension 2n − 2 and a real function.

Keywords: Vaisman manifolds; lcK manifolds; parallel vector fields


  • [1] F. Belgun, On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000), 1–40. Google Scholar

  • [2] N. Buchdahl, On compact Kähler surfaces, Ann. Inst. Fourier 49 no. 1 (1999), 287–302. CrossrefGoogle Scholar

  • [3] S. Dragomir, L. Ornea, Locally conformal Kähler geometry, Progress in Math. 155, Birkhäuser, Boston, Basel, 1998. Google Scholar

  • [4] P. Gauduchon, A. Moroianu, L. Ornea, Compact homogeneous lcK manifolds are Vaisman, Math. Ann. 361 (3-4), (2015), 1043– 1048. Web of ScienceGoogle Scholar

  • [5] P. Gauduchon, L. Ornea, Locally conformally Kähler metrics on Hopf surfaces, Ann. Inst. Fourier 48 no. 4 (1998), 1107–1127. CrossrefGoogle Scholar

  • [6] A. Lamari, Courants kählériens et surfaces compactes, Ann. Inst. Fourier 49 no. 1 (1999), 263–285. CrossrefGoogle Scholar

  • [7] L. Ornea, M. Verbitsky, Structure theorem for compact Vaisman manifolds, Math. Res. Lett., 10 (2003), 799–805. Google Scholar

  • [8] I. Vaisman, A survey of generalizedHopf manifolds, Rend. Sem.Mat. Univ. Politec. Torino 1983, Special Issue (1984), 205–221.Google Scholar

About the article

Received: 2015-05-13

Accepted: 2015-05-30

Published Online: 2015-07-09

Citation Information: Complex Manifolds, Volume 2, Issue 1, ISSN (Online) 2300-7443, DOI: https://doi.org/10.1515/coma-2015-0004.

Export Citation

© 2015 Andrei Moroianu. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Andrei Moroianu, Sergiu Moroianu, and Liviu Ornea
Differential Geometry and its Applications, 2018, Volume 60, Page 33
Kamil Niedziałomski
Results in Mathematics, 2018, Volume 73, Number 2
Cornelia Livia Bejan and Mircea Crasmareanu
International Journal of Geometric Methods in Modern Physics, 2017, Volume 14, Number 02, Page 1750023
Andrei Moroianu and Sergiu Moroianu
International Mathematics Research Notices, 2016, Page rnw151

Comments (0)

Please log in or register to comment.
Log in