Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Complex Manifolds

Ed. by Fino, Anna Maria

1 Issue per year


CiteScore 2017: 0.39

SCImago Journal Rank (SJR) 2017: 0.260
Source Normalized Impact per Paper (SNIP) 2017: 0.660

Mathematical Citation Quotient (MCQ) 2017: 0.18

Open Access
Online
ISSN
2300-7443
See all formats and pricing
More options …

The even Clifford structure of the fourth Severi variety

Maurizio Parton
  • Corresponding author
  • Universit`a di Chieti-Pescara, Dipartimento di Economia, viale della Pineta 4, I-65129 Pescara, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paolo Piccinni
  • Corresponding author
  • Sapienza-Universit`a di Roma, Dipartimento di Matematica, piazzale Aldo Moro 2, I-00185, Roma, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-08-04 | DOI: https://doi.org/10.1515/coma-2015-0008

Abstract

TheHermitian symmetric spaceM = EIII appears in the classification of complete simply connected Riemannian manifolds carrying a parallel even Clifford structure [19]. This means the existence of a real oriented Euclidean vector bundle E over it together with an algebra bundle morphism φ : Cl0(E) → End(TM) mapping Ʌ2E into skew-symmetric endomorphisms, and the existence of a metric connection on E compatible with φ. We give an explicit description of such a vector bundle E as a sub-bundle of End(TM). From this we construct a canonical differential 8-form on EIII, associated with its holonomy Spin(10) · U(1) ⊂ U(16), that represents a generator of its cohomology ring. We relate it with a Schubert cycle structure by looking at EIII as the smooth projective variety V(4) ⊂ CP26 known as the fourth Severi variety.

Keywords: Clifford structure; exceptional symmetric space; octonions; canonical differential form

MSC: Primary 53C26; 53C27; 53C38

References

  • [1] M. Atiyah and J. Berndt. Projective planes, Severi varieties and spheres. In Surveys in Differential Geometry, volume VIII, pages 1–27. Int. Press, Somerville, MA, 2003. Google Scholar

  • [2] J. C. Baez. The octonions. Bull. Amer. Math. Soc. (N.S.), 39(2):145–205, 2002. Google Scholar

  • [3] M. Berger. Du cˆot´e de chez Pu. Ann. Sci. ´ Ecole Norm. Sup. (4), 5:1–44, 1972. Google Scholar

  • [4] A. Borel. Sur la cohomologie des espaces fibr´es principaux et des espaces homog`enes de groupes de Lie compacts. Ann. of Math. (2), 57:115–207, 1953. Google Scholar

  • [5] R. L. Bryant. Remarks on Spinors in Low Dimension, April 1999. Available at http://www.math.duke.edu/~bryant/Spinors. pdf. Google Scholar

  • [6] H. Duan and X. Zhao. The Chow rings of generalized Grassmannians. Found. Comput. Math., 10(3):245–274, 2010. Google Scholar

  • [7] J.-H. Eschenburg. Riemannian Geometry and Linear Algebra, 2012. Available at http://www.math.uni-augsburg.de/ ~eschenbu/riemlin.pdf. Google Scholar

  • [8] J.-H. Eschenburg. Symmetric Spaces and Division Algebras, 2012. Available at http://www.math.uni-augsburg.de/ ~eschenbu/symdiv.pdf. Google Scholar

  • [9] D. Ferus, H. Karcher, and H. F. M¨unzner. Cliffordalgebren und neue isoparametrische Hyperfl¨achen. Math. Z., 177(4):479– 502, 1981. Google Scholar

  • [10] T. Friedrich. Weak Spin(9)-structures on 16-dimensional Riemannian manifolds. Asian J. Math., 5(1):129–160, 2001. Google Scholar

  • [11] C. Gorodski and M. Radeschi. On homogeneous composed Clifford foliations, 2015. arXiv:1503.09058 [math.DG]. Google Scholar

  • [12] F. R. Harvey. Spinors and Calibrations, volume 9 of Perspectives in Mathematics. Academic Press Inc., Boston, MA, 1990. Google Scholar

  • [13] A. Iliev and L. Manivel. The Chow ring of the Cayley plane. Compos. Math., 141(1):146–160, 2005. Google Scholar

  • [14] S. Ishihara. Quaternion K¨ahlerian manifolds. J. Differential Geometry, 9:483–500, 1974. Google Scholar

  • [15] J. M. Landsberg and L. Manivel. The projective geometry of Freudenthal’s magic square. J. Algebra, 239(2):477–512, 2001. Google Scholar

  • [16] R. Lazarsfeld and A. Van de Ven. Topics in the geometry of projective space, volume 4 of DMV Seminar. Birkh¨auser Verlag, Basel, 1984. Google Scholar

  • [17] E. Meinrenken. Clifford algebras and Lie theory, volume 58 of Erg. der Math. und Grenz. Springer, Heidelberg, 2013. Google Scholar

  • [18] A. Moroianu and M. Pilca. Higher rank homogeneous Clifford structures. J. Lond. Math. Soc. (2), 87(2):384–400, 2013. Google Scholar

  • [19] A. Moroianu and U. Semmelmann. Clifford structures on Riemannian manifolds. Adv. Math., 228(2):940–967, 2011. Google Scholar

  • [20] L. Ornea, M. Parton, P. Piccinni, and V. Vuletescu. Spin(9) geometry of the octonionic Hopf fibration. Transformation Groups, 18(3):845–864, 2013. Google Scholar

  • [21] M. Postnikov. Lie groups and Lie algebras, volume V of Lectures in geometry. “Mir”, Moscow, 1986. Google Scholar

  • [22] M. Parton and P. Piccinni. Spin(9) and almost complex structures on 16-dimensional manifolds. Ann. Global Anal. Geom., 41(3):321–345, 2012. Google Scholar

  • [23] M. Parton and P. Piccinni. Spheres with more than 7 vector fields: All the fault of Spin(9). Linear Algebra Appl., 438(3):1113– 1131, 2013. Google Scholar

  • [24] M. Radeschi. Clifford algebras and new singular Riemannian foliations in spheres. Geom. Funct. Anal., 24(5):1660–1682, 2014. Web of ScienceCrossrefGoogle Scholar

  • [25] F. Russo. Tangents and secants of algebraic varieties: notes of a course. Publica¸c˜oes Matem´aticas do IMPA. Instituto de Matem´atica Pura e Aplicada (IMPA), Rio de Janeiro, 2003. 24o Col´oquio Brasileiro de Matem´atica. Google Scholar

  • [26] B. Segre. Prodromi di geometria algebrica. Roma: Edizioni Cremonese, 1972. Google Scholar

  • [27] F. Severi. Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a’ suoi punti tripli apparenti. Palermo Rend., 15:33–51, 1901. Google Scholar

  • [28] H. Toda and T. Watanabe. The integral cohomology ring of F4/T and E6/T. J. Math. Kyoto Univ., 14:257–286, 1974. Web of ScienceGoogle Scholar

  • [29] I. Yokota. Exceptional Lie groups, 2009. arXiv:0902.0431 [math.DG]. Google Scholar

  • [30] F. L. Zak. Severi varieties. Mat. Sb. (N.S.), 126(168)(1):115–132, 144, 1985. Web of ScienceGoogle Scholar

About the article

Received: 2015-06-17

Accepted: 2015-07-22

Published Online: 2015-08-04


Citation Information: Complex Manifolds, Volume 2, Issue 1, ISSN (Online) 2300-7443, DOI: https://doi.org/10.1515/coma-2015-0008.

Export Citation

© 2015 Maurizio Parton and Paolo Piccinni. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Maurizio Parton and Paolo Piccinni
Axioms, 2018, Volume 7, Number 4, Page 72
[2]
Paolo Piccinni
Differential Geometry and its Applications, 2018, Volume 59, Page 122
[3]
Gerardo Arizmendi, Ana L Garcia-Pulido, and Rafael Herrera
The Quarterly Journal of Mathematics, 2018, Volume 69, Number 1, Page 321
[4]
Charles Hadfield and Andrei Moroianu
Annals of Global Analysis and Geometry, 2018
[5]
M. Castrillón López, P. M. Gadea, and I. V. Mykytyuk
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2017, Volume 87, Number 1, Page 17

Comments (0)

Please log in or register to comment.
Log in