Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Complex Manifolds

Ed. by Fino, Anna Maria

1 Issue per year


Mathematical Citation Quotient (MCQ) 2016: 0.67


Emerging Science

Open Access
Online
ISSN
2300-7443
See all formats and pricing
More options …

A differential-geometric approach to deformations of pairs (X, E)

Kwokwai Chan
  • Corresponding author
  • Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yat-Hin Suen
  • Corresponding author
  • Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-01 | DOI: https://doi.org/10.1515/coma-2016-0002

Abstract

This article gives an exposition of the deformation theory for pairs (X, E), where X is a compact complex manifold and E is a holomorphic vector bundle over X, adapting an analytic viewpoint `a la Kodaira- Spencer. By introducing and exploiting an auxiliary differential operator, we derive the Maurer–Cartan equation and differential graded Lie algebra (DGLA) governing the deformation problem, and express them in terms of differential-geometric notions such as the connection and curvature of E, obtaining a chain level refinement of the classical results that the tangent space and obstruction space of the moduli problem are respectively given by the first and second cohomology groups of the Atiyah extension of E over X. As an application, we give examples where deformations of pairs are unobstructed.

References

  • [1] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181–207. MR 0086359 (19,172c) Google Scholar

  • [2] A. Douglis and L. Nirenberg, Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math. 8 (1955), 503–538. MR 0075417 (17,743b) Google Scholar

  • [3] W. Goldman and J. Millson, The deformation theory of representations of fundamental groups of compact K¨ahler manifolds, Inst. Hautes ´Etudes Sci. Publ. Math. (1988), no. 67, 43–96. MR 972343 (90b:32041) Google Scholar

  • [4] , The homotopy invariance of the Kuranishi space, Illinois J.Math. 34 (1990), no. 2, 337–367.MR1046568 (91d:32025) Google Scholar

  • [5] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994, Reprint of the 1978 original. MR 1288523 (95d:14001) Google Scholar

  • [6] L. Huang, On joint moduli spaces, Math. Ann. 302 (1995), no. 1, 61–79. MR 1329447 (96d:32021) Google Scholar

  • [7] D. Huybrechts, The tangent bundle of a Calabi-Yau manifold—deformations and restriction to rational curves, Comm. Math. Phys. 171 (1995), no. 1, 139–158. MR 1341697 (96g:14032) Google Scholar

  • [8] , Complex geometry, Universitext, Springer-Verlag, Berlin, 2005, An introduction. MR 2093043 (2005h:32052) Google Scholar

  • [9] D. Huybrechts and R. P. Thomas, Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes, Math. Ann. 346 (2010), no. 3, 545–569. MR 2578562 (2011b:14030) Web of ScienceGoogle Scholar

  • [10] S. Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, vol. 15, Princeton University Press, Princeton, NJ; Iwanami Shoten, Tokyo, 1987, Kanˆo Memorial Lectures, 5.MR909698 (89e:53100) Google Scholar

  • [11] K. Kodaira and J. Morrow, Complex manifolds, AMS Chelsea Publishing, Providence, RI, 2006, Reprint of the 1971 edition with errata. MR 2214741 (2006j:32001) Google Scholar

  • [12] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I, II, Ann. ofMath. (2) 67 (1958), 328–466. MR 0112154 (22 #3009) Google Scholar

  • [13] , On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math. (2) 71 (1960), 43–76. MR 0115189 (22 #5991) Google Scholar

  • [14] M. Kuranishi, New proof for the existence of locally complete families of complex structures, Proc. Conf. Complex Analysis (Minneapolis, 1964), Springer, Berlin, 1965, pp. 142–154. MR 0176496 (31 #768) Google Scholar

  • [15] S. Li, On the deformation theory of pair (X, E), preprint, arXiv:0809.0344. Google Scholar

  • [16] E. Martinengo, Higher brackets and moduli space of vector bundles, Ph.D. thesis, Sapienza Universit`a di Roma, 2009. Google Scholar

  • [17] A. Moroianu, Lectures on K¨ahler geometry, LondonMathematical Society Student Texts, vol. 69, Cambridge University Press, Cambridge, 2007. MR 2325093 (2008f:32028) Google Scholar

  • [18] A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. ofMath. (2) 65 (1957), 391– 404. MR 0088770 (19,577a) Google Scholar

  • [19] A. Nijenhuis and R. W. Richardson, Jr., Cohomology and deformations in graded Lie algebras, Bull. Amer. Math. Soc. 72 (1966), 1–29. MR 0195995 (33 #4190) Google Scholar

  • [20] X. Pan, Deformations of polarized manifolds with torsion canonical bundles, preprint, arXiv:1310.7162. Google Scholar

  • [21] E. Sernesi, Deformations of algebraic schemes, Grundlehren der Mathematischen WissenschaӔen, vol. 334, Springer- Verlag, Berlin, 2006. MR 2247603 (2008e:14011) Google Scholar

  • [22] Y.-T. Siu and G. Trautmann, Deformations of coherent analytic sheaves with compact supports, Mem. Amer. Math. Soc. 29 (1981), no. 238, iii+155. MR 597091 (82c:32023) Google Scholar

  • [23] G. Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, Mathematical aspects of string theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, Singapore, 1987, pp. 629–646. MR 915841 Google Scholar

  • [24] A. Todorov, The Weil-Petersson geometry of the moduli space of SU(n 3) (Calabi-Yau) manifolds. I, Comm. Math. Phys. 126 (1989), no. 2, 325–346. MR 1027500 (91f:32022) Google Scholar

About the article

Received: 2015-09-02

Accepted: 2016-01-21

Published Online: 2016-02-01


Citation Information: Complex Manifolds, Volume 3, Issue 1, ISSN (Online) 2300-7443, DOI: https://doi.org/10.1515/coma-2016-0002.

Export Citation

© 2016 Kwokwai Chan and Yat-Hin Suen. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in