Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Complex Manifolds

Ed. by Fino, Anna Maria

Covered by Web of Science - Emerging Sources Citation Index and Zentralblatt Math (zbMATH)


CiteScore 2018: 0.64

SCImago Journal Rank (SJR) 2018: 0.643
Source Normalized Impact per Paper (SNIP) 2018: 0.812

Mathematical Citation Quotient (MCQ) 2018: 0.61

Open Access
Online
ISSN
2300-7443
See all formats and pricing
More options …

Holomorphic Cartan geometries and rational curves

Indranil Biswas / Benjamin McKay
Published Online: 2016-03-21 | DOI: https://doi.org/10.1515/coma-2016-0004

Abstract

We prove that any compact Kähler manifold bearing a holomorphic Cartan geometry contains a rational curve just when the Cartan geometry is inherited from a holomorphic Cartan geometry on a lower dimensional compact Kähler manifold. This shows that many complex manifolds admit no or few holomorphic Cartan geometries.

MSC: 53C55; 53C51; 53C56; 53A55

References

  • [1] R. Abraham and J. E.Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass., 1978. Google Scholar

  • [2] D. Abramovich, K. Karu, K. Matsuki and J. Włodarczyk, Torification and factorization of birational maps, J. Amer. Math. Soc., 15, 2002, 3, pp. 531–572. CrossrefGoogle Scholar

  • [3] D. N. Akhiezer, Homogeneous complex manifolds, Current problems in mathematics. Fundamental directions, Vol. 10 (Russian), 223–275, Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986. Google Scholar

  • [4] A. M. Amores, Vector fields of a finite type G-structure, J. Differential Geom., 14, 1979, 1, 1–6. Google Scholar

  • [5] C. Araujo, J. Kollár, Rational curves on varieties, Higher dimensional varieties and rational points, Budapest, 2001, Bolyai Soc. Math. Stud., 12, Springer, Berlin, 2003, 13–68. Google Scholar

  • [6] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., 85, 1957, 181–207. CrossrefGoogle Scholar

  • [7] W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A, Series of Modern Surveys in Mathematics Google Scholar

  • [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 4, 2nd ed., Springer-Verlag, Berlin, 2004. Google Scholar

  • [8] S. Bell, R. Narasimhan, Proper holomorphic mappings of complex spaces, Several complex variables, VI, Encyclopaedia Math. Sci., 69, Springer, Berlin, 1990. Google Scholar

  • [9] F. Bien, A. Borel, and J. Kollár, Rationally connected homogeneous spaces, Invent. Math. 124 (1996), 103–127. Google Scholar

  • [10] I. Biswas and U. Bruzzo, Holomorphic Cartan geometry on manifolds with numerically effective tangent bundle, Diff. Geom. Appl. 29 (2011), 147–153. CrossrefGoogle Scholar

  • [11] I. Biswas and B. McKay, Holomorphic Cartan geometries and Calabi-Yau manifolds, Jour. Geom. Phys. 60 (2010), 661–663. Google Scholar

  • [12] I. Biswas and B. McKay, Holomorphic Cartan geometries, Calabi-Yau manifolds and rational curves, Diff. Geom. Appl. 28 (2010), 102–106. CrossrefGoogle Scholar

  • [13] F. Campana, On twistor spaces of the class C, Jour. Diff. Geom. 33 (1991), 541–549. Google Scholar

  • [14] A. Čap, Two constructions with parabolic geometries, Rend. Circ. Mat. Palermo (2) Suppl. (2006), 11–37. Google Scholar

  • [15] P. Cascini, Rational curves on complex manifolds, Milan J. Math. 81 (2013) 2, 291–315. Google Scholar

  • [16] F. Catanese, H. Esnault, A. T. Huckleberry, K. Hulek and T. Peternell, eds., Global aspects of complex geometry, Springer- Verlag, Berlin, 2006. Google Scholar

  • [17] J.-P. Demailly, T. Peternell, and M. Schneider, Compact complex manifolds with numerically effective tangent bundles, Jour. Alg. Geom. 3 (1994), 295–345. Google Scholar

  • [18] A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné, Ann. Inst. Fourier (Grenoble), 16 (1966), fasc. 1, 1–95. CrossrefGoogle Scholar

  • [19] S. Dumitrescu, Killing fields of holomorphic Cartan geometries, Monatsh. Math. 161 (2010), 145–154. Google Scholar

  • [20] S. Dumitrescu, Meromorphic almost rigid geometric structures, Geometry, rigidity, and group actions, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 2011, pp. 32–58. Google Scholar

  • [21] C. Ehresmann, Sur les arcs analytique d’un espace de Cartan, C. R. Acad. Sci. Paris, 1938, 206, 1433–1436. Google Scholar

  • [22] A. Fujiki, On the Douady space of a compact complex space in the category C, Nagoya Math. Jour. 85 (1982), 189–211. Google Scholar

  • [23] W. Fulton, J. Harris, Representation theory, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991. Google Scholar

  • [24] V. V. Gorbatsevich, A. L. Onishchik, and E. B. Vinberg, Foundations of Lie theory and Lie transformation groups, Springer- Verlag, Berlin, 1997. Google Scholar

  • [25] P. Gauduchon, Le théorème de l’excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B, 285, 1977, 5, A387–A390. Google Scholar

  • [26] W. Goldman, Locally homogeneous geometric manifolds, Proceedings of the International Congress ofMathematicians, Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 717–744. Google Scholar

  • [27] H. Grauert, Th. Peternell, R. Remmert, eds. Several complex variables. VII, Encyclopaedia of Mathematical Sciences, 74, Sheaf-theoretical methods in complex analysis; A reprint of Current problems in mathematics. Fundamental directions. Vol. 74 (Russian), Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI), Moscow, Springer-Verlag, Berlin, 1994. Google Scholar

  • [28] H. Grauert, R. Remmert, Coherent analytic sheaves, Grundlehren der Mathematischen Wissenschaften Google Scholar

  • [Fundamental Principles of Mathematical Sciences], 265, Springer-Verlag, Berlin, 1984. Google Scholar

  • [29] P. Griflths, and J. Harris Principles of algebraic geometry, John Wiley & Sons Inc., New York, 1978. Google Scholar

  • [30] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121–138. Google Scholar

  • [31] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York, 1977. Google Scholar

  • [32] E. Horikawa, On deformations of holomorphic maps. II, J. Math. Soc. Japan 26 (1974), 647–667. CrossrefGoogle Scholar

  • [33] J.-M. Hwang and N. Mok, Uniruled projective manifolds with irreducible reductive G-structures, Jour. Reine Angew. Math. 490 (1997), 55–64. Google Scholar

  • [34] P. Jahnke, T. Peternell and I. Radloff, Some recent developments in the classification theory of higher dimensional manifolds, in Google Scholar

  • [16], pp. 311-357. Google Scholar

  • [35] G. M. Khenkin, ed., Several complex variables IV, Encyclopaedia ofMathematical Sciences, 10, Algebraic aspects of complex analysis; A translation of Sovremennye problemy matematiki. Fundamentalnye napravleniya, Tom 10, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986; Translation by J. Leiterer and J. Nunemacher; Translation edited by S. G. Gindikin and G. M. Khenkin, Springer-Verlag, Berlin, 1990. Google Scholar

  • [36] J. Kollár, Rational curves on algebraic varieties, Ergebnisse derMathematik und ihrer Grenzgebiete, vol. 32, Springer-Verlag, Berlin, 1996. Google Scholar

  • [37] J. Kollár, personal communication by email, 18 March 2014. Google Scholar

  • [38] J. Kollár, personal communication by email, 20 March 2014. Google Scholar

  • [39] J. Magnússon, Lectures on Cycle Spaces, to appear, 2015. Google Scholar

  • [40] B. McKay, Complete complex parabolic geometries, Int. Math. Res. Not., 2006, Art. ID 86937, 34. Google Scholar

  • [41] B. McKay, Characteristic forms of complex Cartan geometries, Adv. Geom. 11 (2007), 138–168. Google Scholar

  • [42] B. McKay, Holomorphic parabolic geometries and Calabi–Yau manifolds, SIGMA Symmetry Integrability Geom. Methods and Appl. 7 (2011), Paper 090, 11pp., math.DG/0812.1749. Google Scholar

  • [43] B. McKay, Holomorphic Cartan geometries on uniruled surfaces, Com. Ren. Mat. 349 (2011), 893–896. Google Scholar

  • [44] B. McKay, Rigid geometry on projective varieties, Math. Zeit. (2012) vol. 272, no. 3, 761–791, arXiv:math/0603276. Google Scholar

  • [45] B. McKay, The Hartogs extension phenomenon for holomorphic parabolic and reductive geometries, February 2013, 28pp., arXiv:1302.5796. Google Scholar

  • [46] A. L. Onishchik, È. B. Vinberg, Lie groups and Lie algebras, III: Structure of Lie groups and Lie algebras, Encyclopaedia of Mathematical Sciences, 41, Springer-Verlag, Berlin, 1994. Google Scholar

  • [47] R. W. Sharpe, Differential geometry, Graduate Texts in Mathematics, vol. 166, Springer-Verlag, New York, 1997. Google Scholar

  • [48] K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, 439, Springer-Verlag, Berlin-New York, 1975. Google Scholar

  • [49] M. Verbitsky, Holography principle for twistor spaces, Pure Appl. Math. Q., 10, (2014), 325–354. Google Scholar

  • [50] H.-C. Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954), 1–32. Google Scholar

  • [51] H. Yamabe, On an arcwise connected subgroup of a Lie group, Osaka Math. J., 2 (1950), 13–14. Google Scholar

About the article

Received: 2015-10-30

Accepted: 2016-02-25

Published Online: 2016-03-21


Citation Information: Complex Manifolds, Volume 3, Issue 1, ISSN (Online) 2300-7443, DOI: https://doi.org/10.1515/coma-2016-0004.

Export Citation

© 2016 Indranil Biswas and Benjamin McKay. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Radu Pantilie
Journal of the Institute of Mathematics of Jussieu, 2018, Page 1
[2]
Indranil Biswas and Sorin Dumitrescu
International Journal of Mathematics, 2016, Volume 27, Number 11, Page 1650094

Comments (0)

Please log in or register to comment.
Log in