Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Complex Manifolds

Ed. by Fino, Anna Maria

Covered by Web of Science - Emerging Sources Citation Index and Zentralblatt Math (zbMATH)


CiteScore 2018: 0.64

SCImago Journal Rank (SJR) 2018: 0.643
Source Normalized Impact per Paper (SNIP) 2018: 0.812

Mathematical Citation Quotient (MCQ) 2018: 0.61

Open Access
Online
ISSN
2300-7443
See all formats and pricing
More options …

Boundary asymptotics of the relative Bergman kernel metric for hyperelliptic curves

Robert Xin Dong
Published Online: 2017-02-08 | DOI: https://doi.org/10.1515/coma-2017-0002

Abstract

We survey variations of the Bergman kernel and their asymptotic behaviors at degeneration. For a Legendre family of elliptic curves, the curvature form of the relative Bergman kernel metric is equal to the Poincaré metric on ℂ \ {0,1}. The cases of other elliptic curves are either the same or trivial. Two proofs depending on elliptic functions’ special properties and Abelian differentials’ Taylor expansions are discussed, respectively. For a holomorphic family of hyperelliptic nodal or cuspidal curves and their Jacobians, we announce our results on the Bergman kernel asymptotics near various singularities. For genus-two curves particularly, asymptotic formulas with precise coefficients involving the complex structure information are written down explicitly.

Keywords: variation of Bergman kernel; degeneration of hyperelliptic curve; node; cusp

References

  • [1] Berndtsson, B., Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains, Ann. Inst. Fourier (Grenoble) 56 (2006), 1633-1662.Google Scholar

  • [2] Berndtsson, B., Curvature of vector bundles associated to holomorphic fibrations, Ann. of Math. 169 (2009), 531-560.Web of ScienceGoogle Scholar

  • [3] Berndtsson, B., Positivity of direct image bundles and convexity on the space of Kähler metrics, J. Diff. Geom. 81 (2009), 457-482.Google Scholar

  • [4] Berndtsson, B., Strict and nonstrict positivity of direct image bundles, Math. Z. 269 (2011), 1201-1218.Web of ScienceGoogle Scholar

  • [5] Berndtsson, B. and Lempert, L., A proof of the Ohsawa-Takegoshi theorem with sharp estimates, J. Math. Soc. Japan 68 (2016), 1461-1472.Google Scholar

  • [6] Berndtsson, B. and Pˇaun, M., Bergman kernel and the pseudoeffectivity of relative canonical bundles, Duke Math. J. 145 (2008), 341-378.Google Scholar

  • [7] Błocki, Z., Some estimates for the Bergman kernel and metric in terms of logarithmic capacity, Nagoya Math. J. 185 (2007), 143-150.Google Scholar

  • [8] Błocki, Z., Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math. 193 (2013), 149-158.Google Scholar

  • [9] Dong, R. X., Boundary asymptotics of the relative Bergman kernel metric for elliptic curves, C. R. Math. Acad. Sci. Paris 353 (2015), 611-615.Google Scholar

  • [10] Dong, R. X., Boundary asymptotics of the relative Bergman kernel metric for elliptic curves II: subleading terms, Ann. Polon. Math. 118 (2016), 59-69.Web of ScienceGoogle Scholar

  • [11] Dong, R. X., Boundary asymptotics of the relative Bergman kernel metric for elliptic curves III: 1 &1, J. Class. Anal. 9 (2016), 61-67.Google Scholar

  • [12] Dong, R. X., Boundary asymptotics of the relative Bergman kernel metric for elliptic curves IV: Taylor expansion, submitted for publication.Google Scholar

  • [13] Dong, R. X., Boundary asymptotics of the relative Bergman kernel metric for curves, preprint.Google Scholar

  • [14] Carlson, J., Müller-Stach, S., and Peters, C., Period Mappings and Period Domains, Camb. Univ. Press, 2003.Web of ScienceGoogle Scholar

  • [15] Fay, J. D., Theta functions on Riemann surfaces, Lecture Notes in Mathematics, 352 (1973), Springer, Berlin.Google Scholar

  • [16] Griflths, P. A., Periods of integrals on algebraic manifolds, III (some global differential-geometric properties of the period mapping), Publ. Math. de l’IHES 38 (1970), 125-180.Google Scholar

  • [17] Guan, Q.-A. and Zhou, X.-Y., A solution of an L2 extension problemwith optimal estimate and applications, Ann. ofMath. 181 (2015), 1139-1208.Google Scholar

  • [18] Habermann, L. and Jost, J., Riemannian metrics on Teichmuller space, Manuscripta Math. 89 (1996), 281-306.Google Scholar

  • [19] Liu, K. and Yang, X., Curvatures of direct image sheaves of vector bundles and applications, J. Diff. Geom. 98 (2014), 117-145.Google Scholar

  • [20] Maitani, F. and Yamaguchi, H., Variation of Bergman metrics on Riemann surfaces, Math. Ann. 330 (2004), 477-489.Google Scholar

  • [21] Ohsawa, T. and Takegoshi, K., On the extension of L2 holomorphic functions. Math. Z. 195 (1987), 197-204.Google Scholar

  • [22] Ohsawa, T., L2 approaches in several complex variables, Spri. Mono. Math., Tokyo, 2015.Google Scholar

  • [23] Schmid, W., Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211-319.Google Scholar

  • [24] Sugawa, T. and Vuorinen M., Some inequalities for the Poincaré metric of plane domains, Math. Z. 250 (2005), 885-906.Google Scholar

  • [25] Pǎun, M. and Takayama, S., Positivity of twisted relative pluricanonical bundles and their direct images, arXiv:math/1409.5504 (2014).Google Scholar

  • [26] Tsuji, H., Curvature semipositivity of relative pluricanonical systems, arXiv:math/0703729 (2007).Google Scholar

  • [27] Yamada, A., Precise variational formulas for abelian differentials. Kodai Math. J. 3 (1980), 114-143.Google Scholar

About the article

Published Online: 2017-02-08

Published in Print: 2017-02-23


Citation Information: Complex Manifolds, Volume 4, Issue 1, Pages 7–15, ISSN (Online) 2300-7443, DOI: https://doi.org/10.1515/coma-2017-0002.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in