Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Complex Manifolds

Ed. by Fino, Anna Maria

CiteScore 2017: 0.39

SCImago Journal Rank (SJR) 2017: 0.260
Source Normalized Impact per Paper (SNIP) 2017: 0.660

Mathematical Citation Quotient (MCQ) 2017: 0.18

Open Access
See all formats and pricing
More options …

A generalized Schwarz lemma for two domains related to μ-synthesis

Sourav Pal / Samriddho Roy
Published Online: 2018-02-02 | DOI: https://doi.org/10.1515/coma-2018-0001


We present a set of necessary and sufficient conditions that provides a Schwarz lemma for the tetrablock E. As an application of this result, we obtain a Schwarz lemma for the symmetrized bidisc G2. In either case, our results generalize all previous results in this direction for E and G2.

Keywords : Tetrablock; Symmetrized bidisc; Schwarz lemma

MSC 2010: 30C80; 32F45


  • [1] A. A. Abouhajar, M. C. White and N. J. Young, A Schwarz lemma for a domain related to μ-synthesis, J. Geom. Anal. 17 (2007), 717-750.Google Scholar

  • [2] A. A. Abouhajar, M. C. White and N. J. Young, Corrections to ’A Schwarz lemma for a domain related to μ-synthesis’, available online at http://www1.maths.leeds.ac.uk/nicholas/abstracts/correction.pdfGoogle Scholar

  • [3] J. Agler and N. J. Young, A Schwarz lemma for the symmetrized bidisc, Bull. London Math. Soc., 33 (2001), 175-186.Google Scholar

  • [4] J. Agler and N. J. Young, A model theory for Γ-contractions, J. Operator Theory 49 (2003), 45-60.Google Scholar

  • [5] G. Bharali, A family of domains associated with μ-synthesis, Integral Equations Operator Theory, 82 (2015), 267- 285.Google Scholar

  • [6] T. Bhattacharyya, The tetrablock as a spectral set, Indiana Univ. Math. J., 63 (2014), 1601-1629.Google Scholar

  • [7] T. Bhattacharyya, S. Pal and S. Shyam Roy, Dilations of Γ-contractions by solving operator equations, Adv. Math. 230 (2012), 577-606.Google Scholar

  • [8] T. Bhattacharyya and S. Pal, A functional model for pure Γ-contractions, J. Oper. Thoery, 71 (2014), 327-339.Google Scholar

  • [9] S. Dineen, The Schwarz lemma, Oxford University Press, 1989.Google Scholar

  • [10] A. Edigarian and W. Zwonek, Schwarz lemma for the tetrablock, Bull. Lond. Math. Soc., 41 (2009), 506-514.Google Scholar

  • [11] A. Edigarian, L. Kosinski and W. Zwonek, The Lempert theorem and the tetrablock, J. Geom. Anal., 23 (2013), 1818-1831.CrossrefGoogle Scholar

  • [12] L. Kosinski, W. Zwonek, Nevanlinna-Pick problem and uniqueness of left inverses in convex domains, symmetrized bidisc and tetrablock, J. Geom. Anal., 26 (2016), 1863-1890.Web of ScienceCrossrefGoogle Scholar

  • [13] A. Nokrane and T. J. Ransford, Schwarz’s lemma for algebroid multifunctions Complex Variables Theory Appl., 45 (2001), 183-196.Google Scholar

  • [14] S. Pal, From Stinespring dilation to Sz.-Nagy dilation on the symmetrized bidisc and operator models, New York Jour. Math., 20 (2014), 545-564.Google Scholar

  • [15] S. Pal, The Failure of rational dilation on the tetrablock, J. Funct. Anal., 269 (2015), 1903-1924.Web of ScienceGoogle Scholar

  • [16] S. Pal, Canonical decomposition of a tetrablock contraction and operator model, J. Math. Anal. Appl., 438 (2016), 274-284.Web of ScienceGoogle Scholar

  • [17] S. Pal, Subvarieties of the tetrablock and von Neumann’s inequality, Indiana Univ. Math. J., 65 (2016), 2051-2079.Google Scholar

  • [18] S. Pal and O. M. Shalit, Spectral sets and distinguished varieties in the symmetrized bidisc, J. Funct. Anal., 266 (2014), 5779-5800.Web of ScienceGoogle Scholar

About the article

Received: 2017-07-01

Accepted: 2018-01-05

Published Online: 2018-02-02

Citation Information: Complex Manifolds, Volume 5, Issue 1, Pages 1–8, ISSN (Online) 2300-7443, DOI: https://doi.org/10.1515/coma-2018-0001.

Export Citation

© 2018 Sourav Pal, Samriddho Roy, published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in