Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Open Computer Science

Editor-in-Chief: van den Broek, Egon

1 Issue per year

Open Access
Online
ISSN
2299-1093
See all formats and pricing
In This Section

Recent trends in metaheuristics for stochastic combinatorial optimization

Walter Gutjahr
  • Dept. of Statistics and Decision Support Systems, University of Vienna, A-1010, Vienna, Austria
  • Email:
Published Online: 2011-03-25 | DOI: https://doi.org/10.2478/s13537-011-0003-3

Abstract

This short overview is an addendum to a recent literature survey by Bianchi et al. on metaheuristics for stochastic combinatorial optimization (SCO). It outlines some new developments that occurred in this field during the last few years. Special attention is given to multi-objective SCO as well as to combinations of metaheuristics with mathematical programming.

Keywords: metaheuristics; combinatorial optimization; stochastic optimization; optimization under uncertainty; multiobjective optimization

  • [1] Bianchi L., Dorigo M., Gambardella L., Gutjahr W.J., A survey on metaheuristics for stochastic combinatorial optimization, NAT COMP, 2009, 8, 239–287 http://dx.doi.org/10.1007/s11047-008-9098-4 [Crossref]

  • [2] Jin Y., Branke J., Evolutionary optimization in uncertain environments — a survey, IEEE T EVOLUT COMPUT, 2005, 9, 303–17 http://dx.doi.org/10.1109/TEVC.2005.846356 [Crossref]

  • [3] Gendreau M., Potvin Y., Handbook of Metaheuristics, 2nd Edition, International Series in Operations Research and Management Science vol. 146, Springer, New York, 2010 http://dx.doi.org/10.1007/978-1-4419-1665-5 [Crossref]

  • [4] Birattari M., Balaprakash P., Stützle T., Dorigo M., Estimation-based local search for stochastic combinatorial optimization using delta evaluations: a case study on the probabilistic traveling salesman problem, INFORMS J COMPUT, 2008, 20, 644–658 http://dx.doi.org/10.1287/ijoc.1080.0276 [Crossref]

  • [5] Balaprakash P., Birattari M., Stützle T., Dorigo M., Adaptive sample size and importance sampling in estimationbased local search for the probabilistic traveling salesman problem, EUR J OPER RES, 2009, 199, 98–110 http://dx.doi.org/10.1016/j.ejor.2008.11.027 [Crossref]

  • [6] Balaprakash P., Birattari M., Stützle T., Dorigo M., Estimation-based metaheuristics for the probabilistic traveling salesman problem, COMPUT OPER RES, 2010, 37, 1939–1951 http://dx.doi.org/10.1016/j.cor.2009.12.005 [Crossref]

  • [7] Hansen P., Mladenovic N., Moreno Perez J., Variable neighbourhood search: methods and applications, ANN OPER RES, 2010, 175, 367–407 http://dx.doi.org/10.1007/s10479-009-0657-6 [Crossref]

  • [8] Gutjahr W.J., Katzensteiner S., Reiter P., A VNS algorithm for noisy problems and its application to project portfolio analysis, In: Hromkovic J. et al. (Ed.), Proc. SAGA 2007 (Stochastic Algorithms: Foundations and Applications) (2007, Berlin Heidelberg), Springer, 2007, 93–104

  • [9] Schilde M., Doerner K.F., Hartl R.F., Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports, Dept. of Business Administration, University of Vienna, 2010

  • [10] Dorigo M., Stützle T., Ant Colony Optimization: Overview and Recent Advances, In: Gendreau M., Potvin J.-Y. (Eds.), Handbook of Metaheuristics, International Series in Operations Research and Management Science vol. 146, Springer US, New York, 2010

  • [11] Poli R., Kennedy J., Blackwell T., Particle swarm optimization, SWARM INTELLIGENCE, 2007, 1, 33–57 http://dx.doi.org/10.1007/s11721-007-0002-0 [Crossref]

  • [12] Balaprakash P., Birattari M., Stützle T., Yuan Z., Dorigo M., Estimation-based ant colony optimization and local search for the probabilistic traveling salesman problem, SWARM INTELLIGENCE, 2009, 3, 223–242 http://dx.doi.org/10.1007/s11721-009-0031-y [Crossref]

  • [13] Marinakis Y., Marinaki M., A hybrid multi-swarm particle swarm optimization algorithm for the probabilistic traveling salesman problem, COMPUT OPER RES, 2010, 37, 432–442 http://dx.doi.org/10.1016/j.cor.2009.03.004 [Crossref]

  • [14] Gutjahr W.J., S-ACO: An Ant-Based Approach to Combinatorial Optimization under Uncertainty, In: Dorigo M., Birattari M., Blum C., Gambardella L.M., Mondada F., Stützle T., Ant Colony Optimization and Swarm Intelligence, 4th International Workshop, ANTS 2004 (2004, Berlin Heidelberg New York), Springer LNCS, 2004, 238–249

  • [15] Vitanov I.V., Vitanov V.I., Harrison D.K., Buffer capacity allocation using ant colony optimisation algorithm, In: Rossetti M.D., Hill R.R., Johansson B., Dunkin A., Ingalls R.G., Proceedings of the 2009 Winter Simulation Conference (2009, Austin, TX), WSC, 2009, 3158–3168

  • [16] Brailsford S.C., Gutjahr W.J., Rauner M., Zeppelzauer W., Combined discrete-event simulation and ant colony optimisation approach for selecting optimal screening policies for diabetic retinopathy, COMPUTATIONAL MANAGEMENT SCIENCE, 2007, 4, 59–83 http://dx.doi.org/10.1007/s10287-006-0008-x [Crossref]

  • [17] Brailsford S.C., Tutorial: Advances and challenges in healthcare simulation modeling, In: Henderson S.G., Biller B., Hsieh M.-H., Shortle J., Tew J.D., Barton R.R. (Eds.), Proceedings of the 2007 Winter Simulation Conference (2007, Washington, DC), WSC, 2007, 1436–1448

  • [18] Birattari M., Balaprakash P., Dorigo M., The ACO/F-Race Algorithm for Combinatorial Optimization Under Uncertainty, In: Doerner K.F., Gendreau M., Greistorfer P., Gutjahr W., Hartl R.F., Reimann M., Metaheuristics, Operations Research/Computer Science Interfaces vol. 39, Springer US, New York, 2007

  • [19] Escobar A.H., Romero R.A., Gallego R.A., Transmission network expansion planing considering uncertainty in generation and demand, Proc. Transmission and Distribution Conference and Exposition: Latin America, 2008 IEEE/PES (2008, Bogota, Colombia), IEEE/PES, 2008, 1–6

  • [20] Gutjahr W.J., Stochastic search in metaheuristics, In: Gendreau M., Potvin Y., Handbook of Metaheuristics, 2nd Edition, International Series in Operations Research and Management Science vol. 146, Springer, New York, 2010

  • [21] Chang H.S., On convergence of evolutionary computation for stochastic combinatorial optimization, The Institute for Systems Research, James Clark School of Engineering, Univ. of Maryland, 2009, 16

  • [22] Hannah L., Powell W., Evolutionary Policy Iteration Under a Sampling Regime for Stochastic Combinatorial Optimization, IEEE T AUTOMAT CONTR, 2010, 55, 1254–1257 http://dx.doi.org/10.1109/TAC.2010.2042766 [Crossref]

  • [23] Prudius A.A., Andradottir S., Two simulated annealing algorithms for noisy objective functions, In: Kuhl M.E., Steiger N.M., Armstrong F.B., Joines J.A. (Eds.), Proc. Winter Simulation Conference 2005 (2005, Orlando, FL), WSC, 2005, 797–802

  • [24] Prudius A.A., Adaptive random search methods for simulation optimization, PhD thesis, Georgia Institute of Technology, USA, 2007

  • [25] Branke J., Meisel S., Schmidt C., Simulated annealing in the presence of noise, J HEURISTICS, 2008, 14, 627–654 http://dx.doi.org/10.1007/s10732-007-9058-7 [Crossref]

  • [26] Fink T.M.A., Inverse protein folding, hierarchical optimisation and tie knots, PhD thesis, University of Cambridge, 1998

  • [27] Maniezzo V., Stützle T., Voss S., Matheuristics: Hybridizing Metaheuristics and Mathematical Programming Springer, New York Dordrecht Heidelberg London, 2009

  • [28] Till J., Sand G., Urselmann M., Engell S., A hybrid evolutionary algorithm for solving two-stage stochastic integer programs in chemical batch scheduling, COMPUT CHEM ENG, 2007, 31, 630–647 http://dx.doi.org/10.1016/j.compchemeng.2006.09.003 [Crossref]

  • [29] Tometzki T., Engell S., Hybrid evolutionary optimizatio of two-stage stochastic integer programming problems: an empirical investigation, EVOL COMPUT, 2009, 17, 511–526 http://dx.doi.org/10.1162/evco.2009.17.4.17404 [Crossref]

  • [30] Hvattum L.M., Lokketangen A., Using scenario trees and progressive hedging for stochastic inventory routing problems, J HEURISTICS, 2009, 15, 527–557 http://dx.doi.org/10.1007/s10732-008-9076-0 [Crossref]

  • [31] Crainic T.G., Fu X., Gendreau M., Rei W., Wallace S.W., Progressive hedging-based meta-heuristics for stochastic network design, CIRRELT Montreal, January 2009, 03

  • [32] Rei W., Gendreau M., Soriano P., A hybrid Monte Carlo branching algorithm for the single vehicle routing problem with stochastic demands, TRANSPORT SCI, 2010, 44, 136–146 http://dx.doi.org/10.1287/trsc.1090.0295 [Crossref]

  • [33] Fischetti M., Lodi A., Local branching, MATH PROGRAM B, 2003, 98, 23–47 http://dx.doi.org/10.1007/s10107-003-0395-5 [Crossref]

  • [34] Hannah L., Powell W., Stewart J., One-stage R & D portfolio optimization with an application to solid oxide fuel cells, ENERGY SYSTEMS, 2010, 1, 141–163 http://dx.doi.org/10.1007/s12667-009-0008-3 [Crossref]

  • [35] Norkin V.I., Ermoliev Y.M., Ruszczynski A., On optimal allocation of indivisibles under uncertainty, OPER RES, 1998, 46, 381–395 http://dx.doi.org/10.1287/opre.46.3.381 [Crossref]

  • [36] Norkin V.I., Pflug G.Ch., Ruszczynski A., A branch and bound method for stochastic global optimization, MATH PROGRAM, 1998, 83, 425–450 [Crossref]

  • [37] Caballero R., Cerdá E., del Mar Munoz M., Rey L., Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multiobjective programming problems, EUR J OPER RES, 2004, 158, 633–648 http://dx.doi.org/10.1016/S0377-2217(03)00371-0 [Crossref]

  • [38] Claro J., de Sousa J., A multiobjective metaheuristic for a mean-risk multistage capacity investment problem, J HEURISTICS, 2010, 16, 85–115 http://dx.doi.org/10.1007/s10732-008-9090-2 [Crossref]

  • [39] Claro J., de Sousa J., A multiobjective metaheuristic for a mean-risk static stochastic knapsack problem, COMPUT OPTIM APPL, 2010, 46, 427–450 http://dx.doi.org/10.1007/s10589-008-9197-2 [Crossref]

  • [40] Hughes E.J., Evolutionary multi-objective ranking with uncertainty and noise, In: Zitzler E., Deb K., Thiele L., Coello Coello C.A., Corne D. (Eds.), Proc. EMO’ 01 (Evolutionary Multicriterion Optimization) (2001, Berlin), Springer, 2001, 329–343

  • [41] Teich J., Pareto-front exploration with uncertain objectives, In: Zitzler E., Deb K., Thiele L., Coello Coello C.A., Corne D. (Eds.), Proc. EMO’ 01 (Evolutionary Multicriterion Optimization) (2001, Berlin), Springer, 2001, 314–328

  • [42] Eskandari H., Rabelo L., Mollaghasemi M., Multiobjective simulation optimization using an enhanced genetic algorithm, In: Kuhl M.E., Steiger N.M., Armstrong F.B., Joines J.A., Proceedings of the 37th conference on Winter simulation, WSC’ 05 (Winter Simulation Conference) (2005, Orlando, Florida), WSC, 2005, 833–841

  • [43] Ding H., Benyucef L., Xie X., A simulation-based multi-objective genetic algorithm approach for networked enterprises optimization, ENG APPL ARTIF INTEL, 2006, 19, 609–623 http://dx.doi.org/10.1016/j.engappai.2005.12.008 [Crossref]

  • [44] Amodeo L., Prins C., Sanchez D., Comparison of Metaheuristic Approaches for Multi-objective Simulation-Based Optimization in Supply Chain Inventory Management, In: Giacobini M., Brabazon A., Cagnoni S., Caro G.A., Ekart A., Esparcia-Alcázar A.I., Farooq M., Fink A., Machado P., McCormack J., O’Neill M., Neri F., Preuß M., Rothlauf F., Tarantino E., Yang S. (Eds.), Applications of Evolutionary Computing, Lecture Notes in Computer Science vol. 5484, Springer, Berlin, Heidelberg, 2009 http://dx.doi.org/10.1007/978-3-642-01129-0_90 [Crossref]

  • [45] Eskandari H., Geiger Ch., Evolutionary multiobjective optimization in noisy problem environments, J HEURISTICS, 2009, 15, 559–595 http://dx.doi.org/10.1007/s10732-008-9077-z [Crossref]

  • [46] Syberfeldt A., Ng A., John R.I., Moore Ph., Multi-objective evolutionary simulation-optimisation of a real-world manufacturing problem, ROBOT CIM-INT MANUF, 2009, 25, 926–931 http://dx.doi.org/10.1016/j.rcim.2009.04.013 [Crossref]

  • [47] Gutjahr W.J., Two metaheuristics for multiobjective stochastic combinatorial optimization, In: Lupanov O.B., Kasim-Zade O.M., Chaskin A.V., Steinhoefl K. (Eds.), Proc. SAGA 2005 (Stochastic Algorithms: Foundations and Applications) (2005, Berlin Heidelberg), Springer, 2005, 116–125

  • [48] Gutjahr W.J., A provably convergent heuristic for stochastic bicriteria integer programming, J HEURISTICS, 2009, 15, 227–258 http://dx.doi.org/10.1007/s10732-008-9071-5 [Crossref]

  • [49] Gutjahr W.J., Reiter P., Bi-objective project portfolio selection and staff assignment under uncertainty, OPTIMIZATION, 2010, 59, 417–445 http://dx.doi.org/10.1080/02331931003700699 [Crossref]

  • [50] Gutjahr W.J., Runtime Analysis of an Evolutionary Algorithm for Stochastic Multi-Objective Combinatorial Optimization, Dept. of Statistics and Decision Support Systems, University of Vienna, 2010

  • [51] Basseur M., Zitzler E., Handling uncertainty in indicator-based multiobjective optimization, INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE RESEARCH, 2006, 2, 255–272 http://dx.doi.org/10.5019/j.ijcir.2006.66 [Crossref]

  • [52] Liefooghe A., Basseur M., Jourdan L., Talbi E.-G., Combinatorial Optimization of Stochastic Multi-objective Problems: An Application to the Flow-Shop Scheduling Problem, In: Obayashi S., Deb K., Poloni C., Hiroyasu T., Murata T. (Eds.), Evolutionary Multi-Criterion Optimization, Lecture Notes in Computer Science vol. 4403, Springer, Berlin, Heidelberg, 2007

  • [53] Liefooghe A., Basseur M., Jourdan L., Talbi E.-G., ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization, In: Obayashi S., Deb K., Poloni C., Hiroyasu T., Murata T. (Eds.), Evolutionary Multi-Criterion Optimization, Lecture Notes in Computer Science vol. 4403, Springer, Berlin, Heidelberg, 2007

About the article

Published Online: 2011-03-25

Published in Print: 2011-03-01



Citation Information: Open Computer Science, ISSN (Online) 2299-1093, DOI: https://doi.org/10.2478/s13537-011-0003-3. Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Walter J. Gutjahr and Alois Pichler
Annals of Operations Research, 2013

Comments (0)

Please log in or register to comment.
Log in