Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Computer Science

Editor-in-Chief: van den Broek, Egon


Covered by:
SCOPUS
Web of Science - Emerging Sources Citation Index


CiteScore 2018: 0.63
Source Normalized Impact per Paper (SNIP) 2018: 0.604


ICV 2017: 98.90



Open Access
Online
ISSN
2299-1093
See all formats and pricing
More options …

On auto-calibration algorithms for a forest growth simulation model

Man Jia / Shiying Tian / Gaolin Zheng
Published Online: 2011-12-27 | DOI: https://doi.org/10.2478/s13537-011-0026-9

Abstract

Forest growth simulation models are useful in evaluating the effects of management practices and climate changes in terrestrial ecosystems, however their successful application requires accurate calibration of model parameters. We have implemented here a stepwise line search (SLS), Gibbs sampling (GS) and preclustering based strength Pareto algorithm (K-SPEA2) to find an optimal set of parameters.

Keywords: forest growth simulation model; calibration; Gibbs sampling; stepwise line search algorithm; strength Pareto evolutionary algorithm; multi-objective optimization

  • [1] Casella G., Edward G., Explaining the Gibbs sampler, The American Statistician, 46(3), 167–174, 1992 http://dx.doi.org/10.2307/2685208CrossrefGoogle Scholar

  • [2] Confesor R., Whittaker G., Automatic calibration of hydrologic models with multi-objective evolutionary algorithm and Pareto optimization, J. Am. Water Resour As., 43(4), 981–989, 2007 http://dx.doi.org/10.1111/j.1752-1688.2007.00080.xCrossrefWeb of ScienceGoogle Scholar

  • [3] Coops N., Waring R., Assessing forest growth across southwestern Oregon under a range of current and future global change scenarios using a process model, 3-PG, Glob. Change Biol., 7(1), 15–29, 2001 http://dx.doi.org/10.1046/j.1365-2486.2001.00385.xCrossrefGoogle Scholar

  • [4] Deb K., Agrawal S., Pratap A., Meyarivan T., A fast and elitist multiobjective genetic algorithm: NSGA-II., IEEE T. Evolut. Comput., 6(2), 182–197, 2002 http://dx.doi.org/10.1109/4235.996017CrossrefGoogle Scholar

  • [5] Duan Q., Sorooshian S., Gupta V., Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28(4), 1015–1031, 1992 http://dx.doi.org/10.1029/91WR02985CrossrefGoogle Scholar

  • [6] Kimmins J., Mailly D., Seely B., Modelling forest ecosystem net primary production: the hybrid simulation approach used in forecast, Ecol. Model., 122(3), 195–224, 1999 http://dx.doi.org/10.1016/S0304-3800(99)00138-6CrossrefGoogle Scholar

  • [7] Kuzmin V., Seo D.J., Koren V., Fast and efficient optimization of hydrologic model parameters using a priori estimates and stepwise line search, J. Hydrol., 353(1–2), 109–128, 2008 http://dx.doi.org/10.1016/j.jhydrol.2008.02.001Web of ScienceCrossrefGoogle Scholar

  • [8] Landsberg J., Mäkelä A., Sievänen R., Kukkola M., Analysis of biomass accumulation and stem size distributions over long period in managed stands of pinus sylvestris in Finland using the 3-PG model, Tree Physiol., 25,781-792, 2005 CrossrefGoogle Scholar

  • [9] Landsberg J., Waring R., A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning, Forest Ecol. Manag., 95(3), 209–228, 1997 http://dx.doi.org/10.1016/S0378-1127(97)00026-1CrossrefGoogle Scholar

  • [10] Laumanns M., Thiele L., Deb K., Zitzler E., Combining convergence and diversity in evolutionary multiobjective optimization, Evol. Comput., 10(3), 263–282, 2002 http://dx.doi.org/10.1162/106365602760234108CrossrefGoogle Scholar

  • [11] Legates D., McCabe G.J.J., Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35(1), 233–241, 1999 http://dx.doi.org/10.1029/1998WR900018CrossrefGoogle Scholar

  • [12] Nash J., Sutcliffe J., River flow forecasting through conceptual models part I — a discussion of principles, J. Hydrol., 10(3), 282–290, 1970 http://dx.doi.org/10.1016/0022-1694(70)90255-6CrossrefGoogle Scholar

  • [13] Nelder J., Mead R., A simplex method for function minimization, Comput. J., 7(4), 308–313, 1965 CrossrefGoogle Scholar

  • [14] Paul K., Booth T., Jovanovic T., Sands P., Morris J., Calibration of the forest growth model 3-PG to eucalypt plantation growing low rainfall regions in Australia., Forest Ecol. Manag., 243, 237–247, 2007 http://dx.doi.org/10.1016/j.foreco.2007.03.029Web of ScienceCrossrefGoogle Scholar

  • [15] Stuart P.L., Least squares quantization in PCM, IEEE T. Inform. Theory, 28, 129–137, 1982 http://dx.doi.org/10.1109/TIT.1982.1056489CrossrefGoogle Scholar

  • [16] Silverman B., Density estimation for statistics and data analysis, Chapman and Hall, London, 1986 Google Scholar

  • [17] Sorooshian S., Gupta V., Automatic calibration of conceptual rainfall runoff models: the question of parameter observability and uniqueness, Water Resour. Res., 19(1), 260–268, 1983 http://dx.doi.org/10.1029/WR019i001p00260CrossrefGoogle Scholar

  • [18] Tian S., Youssef M., Skaggs R., Amatya D., Negm L., Development and application of the forestry version of Drainmod-NII, In: Proceedings of American Society of Agricultural and Biological Engineers, American Society of Agricultural and Biological Engineers, Reno, Nevada, 2009 Google Scholar

  • [19] Xenakis G., D. R., M. M., Sensitivity and uncertainty analysis from a coupled 3-PG and soil organic matter decomposition model, Ecological Modeling, 219, 1–16, 2008 http://dx.doi.org/10.1016/j.ecolmodel.2008.07.020CrossrefGoogle Scholar

  • [20] Zitzler E., Laumanns M., Thiele L., Spea2: Improving the strength Pareto evolutionary algorithm, Technical report, Swiss Federal Institute of Technology, 2001 Google Scholar

  • [21] Zitzler E., Thiele L., An evolutionary algorithm for multiobjective optimization: the strength Pareto approach, Technical report, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), 1998 Google Scholar

About the article

Published Online: 2011-12-27

Published in Print: 2011-12-01


Citation Information: Open Computer Science, Volume 1, Issue 4, Pages 367–374, ISSN (Online) 2299-1093, DOI: https://doi.org/10.2478/s13537-011-0026-9.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in