Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Computer Science

Editor-in-Chief: van den Broek, Egon

1 Issue per year

Covered by:
Emerging Sources Citation Index (Web of Science)

ICV 2017: 98.90

Open Access
See all formats and pricing
More options …

Cognitive traveling in digital space: from keyword search through exploratory information seeking

Pavol Navrat
Published Online: 2012-11-04 | DOI: https://doi.org/10.2478/s13537-012-0024-6


This paper surveys principal concepts involved in various approaches to web search. There are many attempts to improve key word search. There is the concept of exploratory search, which represents a shift towards more complex view of the interested fellow’s role, widening her options. We propose a more radical shift towards viewing information seeking as cognitive traveling in the digital information space involving both web and digital libraries.

Keywords: keyword search; exploratory search; cognitive traveling; social web; semantic web; digital space; digital library; interested fellow

  • [1] Andrejko A., Novel approaches to acquisition and maintenance of user model, Information Sciences and Technologies Bulletin of the ACM Slovakia, 1, 1–10, 2009 Google Scholar

  • [2] Andrejko A., Bieliková M., Comparing instances of ontological concepts for personalized recommendation, Comput. Inform., 28, 429–452, 2009 Google Scholar

  • [3] Babič F., Paralič J., Furdík K., Bednár P., Wagner J., Use of semantic principles in a collaborative system in order to support effective information retrieval, Lect. Notes Artif. Int., 5796, 365–376, 2009 Google Scholar

  • [4] Babič F., Paralič J., Raček M., Wagner J., Analyzes Of interactions and context of performed actions in intelligent virtual environment, Amb. Int. Perspect., 2, 137–144, 2010 Google Scholar

  • [5] Baeza-Yates R., Calderon-Benavides L., Gonzales-Caro C., The intention behind web queries, In: Crestani F., Ferragina P., Sanderson M. (Eds.), Lect. Notes Comput. Sc., 4209, 98–108, 2006 Google Scholar

  • [6] Bai J., Nie J., Adapting information retrieval to query contexts, Inform. Process Manag., 44, 1901–1922, 2008 http://dx.doi.org/10.1016/j.ipm.2008.07.006CrossrefGoogle Scholar

  • [7] Bao S. et al., Optimizing web search using social annotations, In: Williamson C.L., Zurko M.E., Patel-Schneider P.F., Shenoy P.J. (Eds.), www 2007 Proceedings of the 16th international conference on world wide web, (May 2007, Banff, Alberta, Canada), ACM, New York, USA, 501–510, 2007 http://dx.doi.org/10.1145/1242572.1242640CrossrefGoogle Scholar

  • [8] Barla M., Tvarožek M., Bieliková M., Rule-based user characteristics acquisition from logs with semantics for personalized web systems, Comput. Inform., 28, 399–427, 2009 Google Scholar

  • [9] Barla M., Towards social-based user modeling and personalization, Information Sciences and Technologies Bulletin of the ACM Slovakia, 3, 52–60, 2011 Google Scholar

  • [10] Barry S., Briggs P., Coyle M., O’Mahony M.P., Google shared. A case-study in social search, In: Houben G.-J., McCalla G.I., Pianesi F., Zancanaro M. (Eds.), Proceedings of the 17th international conference UMAP 2009, (June 2009, Trento, Italy), Lect. Notes Comput. Sc., 283–294, 2009 Google Scholar

  • [11] Bartalos P., Bieliková M., Fast and scalable semantic web service composition approach considering complex pre/postconditions, In: Services 2009: 2009 IEEE Congress On Services, (July 2009, Los Angeles, CA, USA), IEEE Computer Society, 414–421, 2009 Google Scholar

  • [12] Bates M., The Design of Browsing and Berrypicking Techniques for the Online Search Interface. Online Review, 13, 407–424, 1989 http://dx.doi.org/10.1108/eb024320CrossrefGoogle Scholar

  • [13] Berners-Lee T., et al., Tabulator: Exploring and analyzing linked data on the semantic web, In: Proc. of Int. Semantic Web User Interaction Workshop (November 2006, Athens, Georgia, USA) Google Scholar

  • [14] Bieliková M., Divéky M., Jurnečka P., Kajan R., Omelina L., Automatic Generation Of Adaptive, Educational And Multimedia Computer Games, Signal, Image And Video Processing, Springer London, 2, 371–384, 2008 Google Scholar

  • [15] Bieliková M., Navrat P., Adaptive Web-Based Portal For Effective Learning Programming, Commun. Cognition, 42, 75–88, 2009 Google Scholar

  • [16] Bieliková M., Nagy P., Considering Human Memory Aspects For Adaptation And Its Realization In Aha!, Innovative Approaches For Learning And Knowledge Sharing, 1st European Conf. On Technology Enhanced Learning, Lect. Notes Comput. Sc., 4227, 8-20, 2006 Google Scholar

  • [17] Bordogna G., Campi A., Ronchi S., Psaila G., Query disambiguation based on novelty and similarity user’s feedback, In WI-IAT’ 09: Proceedings of the 2009 IEEE/WIC/ACM WI-IAT, (September 2009, Milan, Italy), IEEE CS, 125–128, 2009 Google Scholar

  • [18] Braak P., Abdullah N., Xu Y., Improving the performance of collaborative filtering recommender systems through user profile clustering, In WI-IAT’ 09: Proceedings of the 2009 IEEE/WIC/ACM WI-IAT, (September 2009, Milan, Italy), IEEE CS, 147–150, 2009 Google Scholar

  • [19] Broder A., A taxonomy of web search, Sigir Forum, 36, 3–10, 2002 http://dx.doi.org/10.1145/792550.792552CrossrefGoogle Scholar

  • [20] Brusilovsky P., Henze N., Open Corpus Adaptive Educational Hypermedia, In The Adaptive Web, Lect. Notes Comput. Sc., 4321, 671–696, 2007 Google Scholar

  • [21] Butka P., Use Of FCA In The Ontology Extraction Step For The Improvement Of The Semantic Information Retrieval, In: Proc. Of Sofsem 2006: Theory And Practice Of Computer Science, Proceedings Volume II, Měřín, Czech Republic, 74–82, 2006 Google Scholar

  • [22] Butka P., Sarnovský M., Bednár P., One Approach To Combination of FCA-Based Local Conceptual Models For Text Analysis — Grid-Based Approach, In: Proc. Of IEEE Int. Symp. On Applied Machine Intelligence, 131–135, 2008 Google Scholar

  • [23] Chi E. H., Information Seeking can be Social, In: National Science Foundation workshop on Information-Seeking Support Systems, (June 2008, Chapel Hill, NC, USA), 39–45 Google Scholar

  • [24] Chirita P., Firan C.S., Nejdl W., Summarizing local context to personalize global web search, In: Proceedings of the 15th ACM international Conference on information and Knowledge Management CIKM’ 06, (November 2006, Arlington VA, USA), ACM, New York, USA, 287–296, 2006 Google Scholar

  • [25] Chirita P., Firan C.S., Nejdl W., Personalized Query Expansion For The Web, In: Proceedings of the 30th Annual international ACM SIGIR Conference on Research and Development in information Retrieval, SIGIR’ 07, (July 2007, Amsterdam, Netherlands), ACM, New York, USA, 7–14, 2007 http://dx.doi.org/10.1145/1277741.1277746CrossrefGoogle Scholar

  • [26] Daoud M., Tamine-Lechani L., Boughanem M., Chebaro B., A session based personalized search using an ontological user profile, In: Proceedings of the 2009 ACM Symposium on Applied Computing SAC’ 09, (March 2009, Honolulu, HI, USA), ACM, New York, USA 1732–1736, 2009 http://dx.doi.org/10.1145/1529282.1529670CrossrefGoogle Scholar

  • [27] Dlugolinsky S., Laclavik M., Hluchý L., Towards a Search System for the Web Exploiting Spatial Data of a Web Document, In: Tjoa A.M., Wagner R. (Eds.), Proceedings of the 2010 Workshops on Database and Expert Systems Applications (DEXA’ 10), (August 2010, Bilbao, Spain), IEEE Computer Society, Washington, DC, USA, 27–31, 2010 Google Scholar

  • [28] Dörk M., Carpendale S., Collins C., Williamson C., VisGets: Coordinated visualizations for web-based information exploration and discovery, IEEE T. Vis. Comput. Gr., 14, 1205–1212, 2008 http://dx.doi.org/10.1109/TVCG.2008.175CrossrefGoogle Scholar

  • [29] Dreher H., Williams R., Assisted Query Formulation Using Normalised Word Vector and Dynamic Ontological Filtering, In: Legind Larsen H. et at. (Eds.): FQAS 2006, Lect. Notes Artif. Int., 4027, 282–294, 2006 Google Scholar

  • [30] Evans B.H., Chi E.H., An elaborated model of social search, Inform. Process Manag., 46, 656–678, 2010 http://dx.doi.org/10.1016/j.ipm.2009.10.012CrossrefGoogle Scholar

  • [31] Furdík K., Paralič J., Babič F., Butka P., Bednár P., Design And Evaluation Of A Web System Supporting Various Text Mining Tasks For The Purposes Of Education And Research, Acta Electrotechnica et Informatica, 10, 51–58, 2010 Google Scholar

  • [32] Guha R., McCool R., Miller E., Semantic Search, In: Proceedings of the 12th International Conference on World Wide Web, (May 2003, Budapest, Hungary), ACM Press, New York, NY, USA, 700–709, 2003 Google Scholar

  • [33] Haake J.M. et al., Modeling and Exploiting Context for Adaptive Collaboration, Int. J. Coop. Inf. Syst., 19(1–2), 71–120, 2010 http://dx.doi.org/10.1142/S0218843010002115CrossrefGoogle Scholar

  • [34] Halanová Z., Návrat P., Rozinajová V., A Tool For Searching The Semantic Web For Supplies Matching Demands, Commun. Cognition ARTIF INT, E-Learning III And The Knowledge Society, 23, 77–82, 2006 Google Scholar

  • [35] Heckmann D. et al., The User Model and Context Ontology GUMO revisited for future Web 2.0 Extensions, Contexts and Ontologies: Representation and Reasoning, 37–46, 2007 Google Scholar

  • [36] Hendler J., Shadbolt N., Hall W., Berners-Lee T., Weitzner D., Web science: an interdisciplinary approach to understanding the web, COMMUN ACM, 51, 60–69, 2008 http://dx.doi.org/10.1145/1364782.1364798CrossrefGoogle Scholar

  • [37] Ingwersen, P., The user in interactive information retrieval evaluation, In: Melucci, M., Baeza-Yates, R. (Eds.), Advanced Topics in Information Retrieval, The Information Retrieval Series 33, Springer, 83–107, 2011 Google Scholar

  • [38] Jansen B.J., Spink A., Bateman J., Saracevic T., Real life information retrieval: a study of user queries on the Web, Sigir Forum, 32, 5–17, 1998 http://dx.doi.org/10.1145/281250.281253CrossrefGoogle Scholar

  • [39] Joachims T., Radlinski F., Search Engines that Learn from Implicit Feedback, IEEE Comput., 40, 34–40, 2007 http://dx.doi.org/10.1109/MC.2007.289CrossrefGoogle Scholar

  • [40] Kajaba M., Navrat P., Chuda D., A Simple Personalization Layer Improving Relevancy of Web Search, Comput. Infor. Syst. J., 13, 29–35, 2009 Google Scholar

  • [41] Kawsar F., Fujinami K., Pirttikangas S., Nakajima T., Personalization and Context Aware Services: A Middleware Perspective, In: Proceedings of the 2nd International Workshop on Personalized Context Modeling and Management for Ubicomp Applications (UbiPCMM) in conjunction with Ubicomp 2006, (September 2006, Orange County, CA, USA) Google Scholar

  • [42] Koutrika G., Ioannidis Y., A Unified User Profile Framework for Query Disambiguation and Personalization, In: Brusilovsky P., Callaway C., Nurnberger A. (Eds.), Proc. Workshop on New Technologies for Personalized Information Access, part of the 10th International Conference on User Modeling (UM’05), (July 2005, Edinburgh, Scotland, UK), 44–53, 2005 Google Scholar

  • [43] Kraft R., Chang C.C., Maghoul F., Kumar R., Searching With Context. In: Carr L., De Roure D., Iyengar A., Goble C.A., Dahlin M. (Eds.), In: Proceedings of the 15th International Conference on World Wide Web www’ 06, (May 2006, Edinbugh, Scotland, UK), ACM, New York, USA, 477–486, 2006 http://dx.doi.org/10.1145/1135777.1135847Google Scholar

  • [44] Kules B., Capra R., Banta M., Sierra T., What do exploratory searchers look at in a faceted search interface?, In: Proceedings of the 9th ACM/IEEE-CS JCDL’ 09, (June 2009, Austin, TX, USA), ACM, New York, USA, 313–322, 2009 Google Scholar

  • [45] Laclavík M., Šeleng M., Hluchý L., Towards Large Scale Semantic Annotation Built On Mapreduce Architecture, In: Bubak M., et al. (Eds.), Proc. ICCS 2008, Part III, Lect. Notes Comput. Sc., 5103, 331–338, 2008 Google Scholar

  • [46] Laclavík M., Šeleng M., Ciglan M., Hluchý L., Ontea: Platform For Pattern Based Automated Semantic Annotation, Comput. Inform., 28, 555–579, 2009 Google Scholar

  • [47] Laclavík M., Dlugolinsky S., Kvassay M., Hluchý L., Use Of E-mail Social Networks For Enterprise Benefit, In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), (August 2010, Toronto, Canada), IEEE Computer Society, Washington, DC, USA, 67–70, 2010 http://dx.doi.org/10.1109/WI-IAT.2010.126CrossrefGoogle Scholar

  • [48] Lawrence S., Context in Web Search, IEEE Data Eng. Bull., 23(3), 25–32, 2000 Google Scholar

  • [49] Luxenburger J., Elbassuoni S., Weikum G., Matching Task Profiles And User Needs In Personalized Web Search, In: Shanahan J.G. et al. (Eds.), Proceeding of the 17th ACM Conference on Information and Knowledge Management CIKM’ 08, (October 2008, Napa Valley, CA, USA), ACM, New York, USA, 689–698, 2008 Google Scholar

  • [50] Mäkelä E., Hyvönen E., Saarela S., Viljanen K., OntoViews — A Tool for Creating Semantic Web Portals, In: McIlraith S.A., Plexoasakis D., Harmelen F. (Eds.), ISWC 2004: Proceedings of the 3rd International Semantic Web Conference, (November 2004, Hiroshima, Japan), Lect. Notes Comput. Sc., 3298, 797–811, 2004 Google Scholar

  • [51] Marchionini G., Exploratory search: from finding to understanding. Commun. Acm., 49, 41–46, 2006 http://dx.doi.org/10.1145/1121949.1121979CrossrefGoogle Scholar

  • [52] Matušíková K., Bieliková M., Social Navigation For Semantic Web Applications Using Space Maps, Comput. Inform., 26(3), 281–299, 2007 Google Scholar

  • [53] Mayer M., Web history tools and revisitation support: A survey of existing approaches and directions, Foundations and Trends in HCI, 2, 173–278, 2009 Google Scholar

  • [54] Micarelli A., Gasparetti F., Sciarrone F., Gauch S., Personalized Search on the World Wide Web, In: Brusilovsky P., Kobsa A., Nejdl W. (Eds.), The Adaptive Web, Lect. Notes Comput. Sc., 4321, 195–230, 2007 Google Scholar

  • [55] Mika P., Ontologies are us: A unified model of social networks and semantics, J. Web Semant., 5, 5–15, 2007 http://dx.doi.org/10.1016/j.websem.2006.11.002CrossrefGoogle Scholar

  • [56] Navrat P., Taraba T., Context Search, In: Li Y., Raghavan V.V., Broder A., Ho H. (Eds.), 2007 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology — Workshops, (November 2007, Silicon Valley, CA, USA), IEEE Computer Society, 99–102, 2007 Google Scholar

  • [57] Navrat P., Bielikova M., Rozinajova V., Acquiring, Organising And Presenting Information And Knowledge From The Web, Commun. Cognition, 40, 37–44, 2007 Google Scholar

  • [58] Navrat P., Taraba T., Bou Ezzeddine A., Chuda D., Context Search Enhanced by Readability Index, In: Bramer M. (Ed.), Artificial Intelligence in Theory and Practice II, IFIP 20th World Computer Congress, TC 12: IFIP AI 2008 Stream, (September 2008, Milano, Italy), IFIP 276 Springer, 373–382, 2008 Google Scholar

  • [59] Navrat P. et al., Cognitive traveling in digital space of the Web and digital libraries supported by personalized services and social networks, Unpublished project proposal, Slovak University of Technology, Bratislava 2010 Google Scholar

  • [60] Ono C., Kurokawa M., Motomura Y., Asoh H., A Context-aware movie preference model using a Bayesian network for recommendation and promotion. In: UM 2007, Lect. Notes Comput. Sc., 4511, 247–257, 2007 Google Scholar

  • [61] Paralič J., Paralič M., Some Approaches To Text Mining And Their Potential For Semantic Web Applications, J. Inform. Organ. Sci., 31, 157–170, 2007 Google Scholar

  • [62] Paralič J., Babič F., Wagner J., Simonenko E., Spyratos N., Sukibuchi T., Analyses Of Knowledge Creation Processes Based On Different Types Of Monitored Data, Foundations Of Intelligent Systems, Lect. Notes Comput. Sc., 5722, 321–330, 2009 Google Scholar

  • [63] Peng W., Lin Y., Ranking Web Search Results from Personalized Perspective, In: Proceedings of the The 8th IEEE International Conference on E-Commerce Technology and the 3rd IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services, CEC-EEE, IEEE Computer Society, Washington, DC, USA, 12, 2006 http://dx.doi.org/10.1109/CEC-EEE.2006.72CrossrefGoogle Scholar

  • [64] Rose D.E., The Information-Seeking Funnel, In: National Science Foundation workshop on Information-Seeking Support Systems (ISSS), June 2008, Chapel Hill, NC, USA, 32–36 Google Scholar

  • [65] Salamanca A., León E., An Integrated Architecture for Personalized Query Expansion in Web Search, In: Proceedings 6th AAAI Workshop on Intelligent Techniques for Web Personalization & Recommender Systems, Chicago, 20–28, 2008 Google Scholar

  • [66] Sarnovský M., Butka P., Paralič J., Grid-Based Support For Different Text Mining Tasks, Acta Polytech. Hung., 6, 5–27, 2009 Google Scholar

  • [67] Schulz H.-J., Schumann H., 2006. Visualizing Graphs — A Generalized View, In: IV 2006: 10th Int. Conf. on Information Visualization, (July 2006, London, UK), IEEE CS, 166–173, 2006 Google Scholar

  • [68] Schwarzkopf. E. et al., Mining the Structure of Tag Spaces for User Modeling (2007), In: Data Mining for User Modeling, Workshop held at UM, 63–75, 2007 Google Scholar

  • [69] Shen X., Tan B., Zhai C., Implicit User Modeling for Personalized Search, In: Herzog O., Schek H.-J., Fuhr N., Chowdhury A., Teiken W. (Eds.), Proceedings of the 2005 ACM CIKM International Conference on Information and Knowledge Management, (November 2005, Bremen Germany), ACM, New York, USA, 824–831, 2005 Google Scholar

  • [70] Sieg A., Mobasher B., Burke R., Web Search Personalization With Ontological User Profiles, In: Silva M.J., Laender A.H.F., Baeza-Yates R.A., McGuinness D.L., Olstad B., Olsen O.H., Falčao A.O. (Eds.), Proceedings of the Sixteenth ACM Conference on Conference on information and Knowledge Management, CIKM’ 07, (November 2007, Lisbon, Portugal) ACM, New York, USA, 525–534, 2007 http://dx.doi.org/10.1145/1321440.1321515CrossrefGoogle Scholar

  • [71] Song Y., He L., Optimal Rare Query Suggestion With Implicit User Feedback, In: www 2010 Proceedings of the 19th International Conference on World Wide Web, (April 2010, Raleigh, NC, USA), ACM, New York, USA, 901–910, 2010 http://dx.doi.org/10.1145/1772690.1772782CrossrefGoogle Scholar

  • [72] Steinerová J., Šušol J., Library Users In Human Information Behaviour, Online Inform. Rev., 29(2), 139–156, 2005 http://dx.doi.org/10.1108/14684520510598020CrossrefGoogle Scholar

  • [73] Steinerová J., Šušol J., Users’ Information Behavior — A Gender Perspective, Inform. Res., 12, 1–16, 2007 Google Scholar

  • [74] Steinerová J., Relevance Assessment For Digital Libraries, MOUSAION, 25, 37–57, 2007 Google Scholar

  • [75] Steinerova J., Ecological dimensions of information literacy, Information Research, 15, Paper CoLIS 719, 2010 [Available at http://InformationR.net/ir/15-4/colis719.html] Google Scholar

  • [76] Suchal J., Navrat P., Full Text Search Engine as Scalable K-Nearest Neighbor Recommendation System, In: Bramer M. (Ed.), Artificial Intelligence in Theory and Practice III IFIP Advances in Information and Communication Technology, 331/2010, 165–173, 2010 Google Scholar

  • [77] Teevan J., Dumais S.T., Horvitz E., Personalizing Search Via Automated Analysis Of Interests And Activities, In: Baeza-Yates R.A., Ziviani N., Marchionini G., Moffat A., Tait J. (Eds.), Proceedings of the 28th Annual International ACM SIGIR Conference On Research And Development In Information Retrieval, SIGIR’ 05 (August 2005, Salvador, Brazil), ACM, New York, USA, 449–456, 2005 http://dx.doi.org/10.1145/1076034.1076111CrossrefGoogle Scholar

  • [78] Teevan J., Dumais S.T., Liebling D.J., To Personalize or Not to Personalize: Modeling Queries with Variation in User Intent, In: Myaeng S.-H., Oard D.W., Sebastiani F., Chua T.-S., Leong M.-K. (Eds.), Proceedings of the 31st Annal International ACM SIGIR Conference On Research And Development In Information Retrieval, SIGIR’ 08 (July 2008, Singapore), ACM, Singapore, 163–170, 2008 http://dx.doi.org/10.1145/1390334.1390364CrossrefGoogle Scholar

  • [79] Teevan J., Morris M.R., Bush S., Discovering and using groups to improve personalized search, In: Baeza-Yates R., Boldi P., Ribeiro-Neto B.,. Cambazoglu B. B. (Eds.), Proceedings of the Second ACM international Conference on Web Search and Data Mining, WSDM’ 09, (February 2009, Barcelona, Spain) ACM, New York, USA, 15–24, 2009 http://dx.doi.org/10.1145/1498759.1498786CrossrefGoogle Scholar

  • [80] Theng Y.L., Thimbleby H., Jones M., “Lost in hyperspace”: Psychological problem or bad design?”, APCHI’96, Singapore, 387–396, 1996 Google Scholar

  • [81] Tvarožek J., Bootstrapping a Socially Intelligent Tutoring Strategy, Information Sciences and Technologies Bulletin of the ACM Slovakia, 3, 33–41, 2011 Google Scholar

  • [82] Tvarožek M., Bieliková M., Personalized Faceted Navigation In The Semantic Web, Lect. Notes Comput. Sc., 4607, 511–515, 2006 Google Scholar

  • [83] Tvarožek M., Bieliková M., Personalized Faceted Browsing For Digital Libraries, Lect. Notes Comput. Sc., 4675, 485–488, 2007 Google Scholar

  • [84] Tvarožek M., Bieliková M., Collaborative Multi-Paradigm Exploratory Search, In: Proceedings of the Hypertext 2008 Workshop on Collaboration and Collective Intelligence, WebScience’08 (ACM Press, New York, USA, 2008) 29–33 http://dx.doi.org/10.1145/1379157.1379165CrossrefGoogle Scholar

  • [85] Tvarožek M., Exploratory Search in the Adaptive Social SemanticWeb, Information Sciences and Technologies Bulletin of the ACM Slovakia, 3, 42–51, 2011 Google Scholar

  • [86] Wang S., Jing F., He J., Du Q., Zhang L., Group: presenting web image search results in semantic clusters, In: Proceedings of the SIGCHI Conference on Human Factors in Comp. Sys., ACM Press, New York, NY, USA, 587–596, 2007 Google Scholar

  • [87] White R., Roth R., Exploratory Search: Beyond the Query-Response Paradigm. Morgan & Claypool, 2009 Google Scholar

  • [88] Wilson M.L., Schraefel M.C., White R.W., Evaluating advanced search interfaces using established informationseeking models, J Am. Soc. Inf. Sci. Tec., 60, 1407–1422, 2009 http://dx.doi.org/10.1002/asi.21080CrossrefGoogle Scholar

  • [89] Zhu Z., Xu J., Ren X., Tian Y., Li L., Query Expansion Based on a Personalized Web Search Model, In: Proceedings of the Third International Conference on Semantics, Knowledge and Grid SKG, IEEE Computer Society, Washington, DC, USA, 128–133, 2007 Google Scholar

About the article

Published Online: 2012-11-04

Published in Print: 2012-10-01

Citation Information: Open Computer Science, Volume 2, Issue 3, Pages 170–182, ISSN (Online) 2299-1093, DOI: https://doi.org/10.2478/s13537-012-0024-6.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in