Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Computer Science

Editor-in-Chief: van den Broek, Egon

1 Issue per year

Open Access
Online
ISSN
2299-1093
See all formats and pricing
More options …

The speech signal segmentation algorithm using pitch synchronous analysis

Yedilkhan Amirgaliyev / Minsoo Hahn / Timur Mussabayev
Published Online: 2017-02-27 | DOI: https://doi.org/10.1515/comp-2017-0001

Abstract

Parameterization of the speech signal using the algorithms of analysis synchronized with the pitch frequency is discussed. Speech parameterization is performed by the average number of zero transitions function and the signal energy function. Parameterization results are used to segment the speech signal and to isolate the segments with stable spectral characteristics. Segmentation results can be used to generate a digital voice pattern of a person or be applied in the automatic speech recognition. Stages needed for continuous speech segmentation are described.

Keywords: speech signal segmentation; pitch frequency; speech parameterization; signal smoothing; FIR filter

References

  • [1] Linguistic encyclopedic dictionary. Article “Segmentation” 1990, http://tapemark.narod.ru/les/436b.html. (in Russian)Google Scholar

  • [2] Averintsev S.S., Arab-Ogly E.A., Ilyichev L.F., et al., Philosophical encyclopedic dictionary, 2nd ed., M.: Sov. encyclopedia, 1989 (in Russian)Google Scholar

  • [3] Vapnik V.N., Chervonenkis A.Ya., Theory of pattern recognition, Moscow, 1974 (in Russian)Google Scholar

  • [4] Glushkov V.M., Amosov N.M., Artemenko A. I., Encyclopedia of Cybernetics. Volume 2, K.: Chief editorial board of Ukrainian Soviet encyclopedia, 1974, 46-48 (in Russian)Google Scholar

  • [5] Jain A.K., Murty M.N., Flynn P.J., Data Clustering: A Review, ACM Computing Surveys, 1999, 31(3) 265-323Google Scholar

  • [6] Cheng Y., Mean shift, mode seeking, and clustering, IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17(7) 790-799CrossrefGoogle Scholar

  • [7] Sharma L., Ramya K., A Review on Density based Clustering Algorithms for Very Large Datasets, IJETAE, 2013, 3(12) 398-403Google Scholar

  • [8] Kodzasov S.V., Krivnova O.F., General phonetics, RSUH, Moscow, 2001, 106 (in Russian)Google Scholar

  • [9] Kedrova G.E., Potapov V.V., Egorov A.M., Emelianova E.B., Physical characteristics of speech sounds, 2002, http://fonetica.philol.msu.ru/nn/n15.htm. (in Russian)Google Scholar

  • [10] Ashby M., Maidment J., Introducing Phonetic Science, Cambridge University Press, 2005Google Scholar

  • [11] Yukio Sato, Signal processing. First view, Dodeka, 2002, 29-32Google Scholar

  • [12] Kester W., Digital signal processing, Chapter 6, 2010Google Scholar

  • [13] Shishkov A. N., Digital signal processors, 2011, http://frela-mk.narod.ru/olderfiles/1/COS_i_CSP.pdf (in Russian)Google Scholar

  • [14] Rabiner L.R., Schafer R.V., Digital signal processing, M.: Radio and communications, 1981, 112-121 (in Russian)Google Scholar

  • [15] Phonetics, http://russkiy-na-5.ru/articles/157, (Accessed: 17.06.2016), (in Russian)Google Scholar

  • [16] Vishnyakova O.A., Lavrov D.N., Automatic segmentation of the speech signal based on the discrete wavelet transform. Mathematical structures and modeling, 2011, 23, 43-48 (in Russian) Google Scholar

About the article

Received: 2016-11-03

Accepted: 2017-02-07

Published Online: 2017-02-27

Published in Print: 2017-03-28


Citation Information: Open Computer Science, Volume 7, Issue 1, Pages 1–8, ISSN (Online) 2299-1093, DOI: https://doi.org/10.1515/comp-2017-0001.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in