Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Computer Science

Editor-in-Chief: van den Broek, Egon

Covered by:
Web of Science - Emerging Sources Citation Index


ICV 2017: 98.90

Open Access
See all formats and pricing
More options …

Using superimposed multidimensional schemas and OLAP patterns for RDF data analysis

Median Hilal
  • Corresponding author
  • Department of Business Informatics – Data and Knowledge Engineering, Johannes Kepler University Linz, Linz, 4040, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christoph G. Schuetz
  • Department of Business Informatics – Data and Knowledge Engineering, Johannes Kepler University Linz, Linz, 4040, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Schrefl
  • Department of Business Informatics – Data and Knowledge Engineering, Johannes Kepler University Linz, Linz, 4040, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-11 | DOI: https://doi.org/10.1515/comp-2018-0003


The foundations for traditional data analysis are Online Analytical Processing (OLAP) systems that operate on multidimensional (MD) data. The Resource Description Framework (RDF) serves as the foundation for the publication of a growing amount of semantic web data still largely untapped by companies for data analysis. Most RDF data sources, however, do not correspond to the MD modeling paradigm and, as a consequence, elude traditional OLAP. The complexity of RDF data in terms of structure, semantics, and query languages renders RDF data analysis challenging for a typical analyst not familiar with the underlying data model or the SPARQL query language. Hence, conducting RDF data analysis is not a straightforward task. We propose an approach for the definition of superimposed MD schemas over arbitrary RDF datasets and show how to represent the superimposed MD schemas using well-known semantic web technologies. On top of that, we introduce OLAP patterns for RDF data analysis, which are recurring, domain-independent elements of data analysis. Analysts may compose queries by instantiating a pattern using only the MD concepts and business terms. Upon pattern instantiation, the corresponding SPARQL query over the source data can be automatically generated, sparing analysts from technical details and fostering self-service capabilities.

Keywords: Linked Open Data; Self-Service Business Intelligence; Multidimensional Modeling


  • [1] Vaisman A., Zimányi E., Data Warehouse Systems: Design and Implementation, Springer, 2014Web of ScienceGoogle Scholar

  • [2] Schmachtenberg M., Bizer C., Paulheim H., Adoption of the linked data best practices in different topical domains, In: Mika P. et al. (Eds.), The Semantic Web - ISWC 2014, LNCS, Springer, 2014, 8796, 245-260Google Scholar

  • [3] Colazzo D., Goasdoué F., Manolescu I., Roatiş A., RDF analytics: lenses over semantic graphs, In: Proceedings of the 23rd International World Wide Web Conference, ACM, 2014, 467-478Google Scholar

  • [4] Neumayr B., Schuetz C. G., Schrefl M., Towards ontology-driven RDF analytics, In: Jeusfeld M., Karlapalem K. (Eds.), Advances in Conceptual Modeling, ER 2015 Workshops, LNCS, Springer, 2015, 9382, 210-219Google Scholar

  • [5] Alpar P., Schulz M., Self-service business intelligence, Business & Information Systems Engineering, 2016, 58(2), 151-155CrossrefWeb of ScienceGoogle Scholar

  • [6] Etcheverry L., Vaisman A. A., QB4OLAP: A Vocabulary for OLAP cubes on the semantic web, In: Proceedings of COLD 2012, CEUR-WS.org, 2012, 905Google Scholar

  • [7] Schuetz C. G., Schausberger S., Kovacic I., Schrefl M., Semantic OLAP patterns: Elements of reusable business analytics, In: Panetto H. et al. (Eds.), On the Move to Meaningful Internet Systems, OTM 2017 Conferences, LNCS, Springer, 2017, 10574, 318-336, 10.1007/978-3-319-69459-7_22Google Scholar

  • [8] Wikimedia Foundation, Wikidata, https://www.wikidata.org/Google Scholar

  • [9] Erxleben F., Günther M., Krötzsch M., Mendez J., Vrandecic D., Introducing Wikidata to the linked data web, In: Mika P. et al. (Eds.), The Semantic Web - ISWC 2014, LNCS, Springer, 2014, 8796, 50-65, 10.1007/978-3-319-11964-9_4Google Scholar

  • [10] Wikimedia Foundation, Wikidata Query Service, https://query.wikidata.org/Google Scholar

  • [11] W3C, RDF 1.1 Concepts and Abstract Syntax Reference - W3C Recommendation 25 February 2014, https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/Google Scholar

  • [12] W3C, SPARQL 1.1 Query Language - W3C Recommendation 21 March 2013, https://www.w3.org/TR/2013/REC-sparql11-query-20130321/Google Scholar

  • [13] Bizer C., Heath T., Berners-Lee T., Linked Data - the story so far, International Journal on Semantic Web and Information Systems, 2009, 5(3), 1-22, 10.4018/jswis.2009081901Google Scholar

  • [14] DBPedia, http://wiki.dbpedia.org/Google Scholar

  • [15] Nebot V., Berlanga R., Building data warehouses with semantic web data, Decision Support Systems, 2012, 52(4), 853-868CrossrefGoogle Scholar

  • [16] W3C, The RDF Data Cube Vocabulary - W3C Recommendation 16 January 2014, https://www.w3.org/TR/2014/REC-vocabdata-cube-20140116/Google Scholar

  • [17] Kämpgen B., O’Riain S., Harth A., Interacting with statistical linked data via OLAP operations, In: The Semantic Web: ESWC 2012 Satellite Events, LNCS, Springer, 2015, 7540, 87-101Google Scholar

  • [18] Etcheverry L., Vaisman A. A., Efficient Analytical Queries on Semantic Web Data Cubes, Journal on Data Semantics, 2017, 6(4), 199-219Google Scholar

  • [19] Eckerson W. W., Pervasive business intelligence: Techniques and technologies to deploy BI on an enterprise scale, TDWI Best Practices Report, 2008Google Scholar

  • [20] Neuböck T., Schrefl M., Modelling knowledge about data analysis processes in manufacturing, IFAC-PapersOnLine, 2015, 48(3), 277-282Google Scholar

  • [21] Schuetz C. G., Neumayr B., Schrefl M., Neuböck T., Reference modeling for data analysis: The BIRD approach, International Journal of Cooperative Information Systems, 2016, 25(2), 1-46Web of ScienceGoogle Scholar

  • [22] Golfarelli M., Maio D., Rizzi S., The dimensional fact model: A conceptual model for data warehouses, International Journal of Cooperative Information Systems, 1998, 7, 215-247CrossrefGoogle Scholar

  • [23] Wikidata SPARQL Prefixes, https://en.wikibooks.org/wiki/SPARQL/PrefixesGoogle Scholar

  • [24] Etcheverry L., Gómez S. A., Vaisman A. A., Modeling and querying data cubes on the semantic web, CoRR, abs/1512.06080, 2015Google Scholar

  • [25] Ibragimov D., Hose K., Pedersen T. B., Zimányi E., Optimizing aggregate SPARQL queries using materialized RDF views, In: Groth P. et al. (Eds.), The Semantic Web - ISWC 2016, LNCS, Springer, 2016, 9981, 341-359Google Scholar

  • [26] Kovacic I., Schuetz C. G., Schausberger S., Sumereder R., Schrefl M., Guided query composition with semantic OLAP patterns, In: Workshop Proceedings of the EDBT/ICDT 2018 Joint Conference, CEUR-WS.org, 2018, 2083, 67-74Google Scholar

  • [27] Barišic A., Amaral V., Goulão M., Barroca B., Evaluating the usability of domain-specific languages, In: Software Design and Development: Concepts, Methodologies, Tools, and Applications, IGI Global, 2014, 2120-2141CrossrefGoogle Scholar

  • [28] Wegeler T., Gutzeit F., Destailleur A., Dock B., Evaluating the benefits of using domain-specific modeling languages: an experience report, In: Proceedings of the 2013 ACM Workshop on Domain-Specific Modeling (DSM@SPLASH 2013), 2013, 7-12, 10.1145/2541928.2541930Google Scholar

  • [29] Hilal M., Schuetz C. G., Schrefl M., An OLAP endpoint for RDF data analysis using analysis graphs, In: Proceedings of the 16th International Semantic Web Conference (ISWC 2017) - Posters and Demonstrations and Industry Tracks, CEUR-WS.org, 2017, 1963Google Scholar

  • [30] Hilal M., A proposal for self-service OLAP endpoints for linked RDF datasets, In: Ciancarini P. et al. (Eds.), Knowledge Engineering and Knowledge Management - EKAW 2016 Satellite Events, LNCS, Springer, 2016, 10180, 245-250Google Scholar

About the article

Received: 2018-03-09

Accepted: 2018-04-25

Published Online: 2018-07-11

Citation Information: Open Computer Science, Volume 8, Issue 1, Pages 18–37, ISSN (Online) 2299-1093, DOI: https://doi.org/10.1515/comp-2018-0003.

Export Citation

© 2018 Median Hilal, et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in