Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Computer Science

Editor-in-Chief: van den Broek, Egon


Covered by:
SCOPUS
Web of Science - Emerging Sources Citation Index

 

ICV 2017: 98.90


Open Access
Online
ISSN
2299-1093
See all formats and pricing
More options …

A framework for improving error messages in dependently-typed languages

Joseph Eremondi / Wouter Swierstra / Jurriaan Hage
Published Online: 2019-01-24 | DOI: https://doi.org/10.1515/comp-2019-0001

Abstract

Dependently-typed programming languages provide a powerful tool for establishing code correctness. However, it can be hard for newcomers to learn how to employ the advanced type system of such languages effectively. For simply-typed languages, several techniques have been devised to generate helpful error messages and suggestions for the programmer. We adapt these techniques to dependently-typed languages, to facilitate their more widespread adoption. In particular, we modify a higher-order unification algorithm that is used to resolve and type-check implicit arguments. We augment this algorithm with replay graphs, allowing for a global heuristic analysis of a unification problem-set, error-tolerant typing, which allows type-checking to continue after errors are found, and counter-factual unification, which makes error messages less affected by the order in which types are checked. A formalization of our algorithm is presented with an outline of its correctness. We implement replay graphs, and compare the generated error messages to those from existing languages, highlighting the improvements we achieved.

Keywords: higher-order unification; type error diagnosis; counter-factual typing; type-inference

References

  • [1] Barik T., Smith J., Lubick K., Holmes E., Feng J., Murphy-Hill E., Parnin C., Do developers read compiler error messages?, In: Proceedings of the 39th International Conference on Software Engineering (ICSE ’17), IEEE Press Piscataway, NJ, USA, 2017, 575-585, DOI: 10.1109/ICSE.2017.59CrossrefGoogle Scholar

  • [2] Heeren B., Hage J., Swierstra S. D., Constraint based type inferencing in Helium, Immediate Applications of Constraint Programming (ACP), 2003, 57, http://www.open.ou.nl/bhr/ConstraintBasedTI.htmlGoogle Scholar

  • [3] Hage J., Heeren B., Heuristics for type error discovery and recovery, In: Proceedings of the 18th International Conference on Implementation and Application of Functional Languages (IFL’06), Springer-Verlag, Berlin, Heidelberg, 2007, 199-216, DOI:10.1007/978-3-540-74130-5_12CrossrefGoogle Scholar

  • [4] Heeren B. J., Top quality type error messages, Ph.D. thesis, Utrecht University, Utrecht, Netherlands, 2005, IPA Dissertation Series, https://dspace.library.uu.nl/handle/1874/7297Google Scholar

  • [5] Chen S., Erwig M., Counter-factual typing for debugging type errors, In: Proceedings of the 41st ACM SIGPLANSIGACT Symposium on Principles of Programming Languages (POPL ’14), ACM, New York, NY, USA, 2014, 583-594, DOI: 10.1145/2535838.2535863CrossrefGoogle Scholar

  • [6] Norell U., Dependently typed programming in Agda, In: Proceedings of the 4th International Workshop on Types in Language Design and Implementation (TLDI ’09), ACM, New York, NY, USA, 2009, 1-2, DOI: 10.1145/1481861.1481862Google Scholar

  • [7] Brady E., Idris, a general-purpose dependently typed programming language: design and implementation, Journal of Functional Programming, 2013, 23(5), 552-593, DOI: 10.1017/S095679681300018XCrossrefGoogle Scholar

  • [8] Haack C., Wells J. B., Type error slicing in implicitly typed higher-order languages, Science of Computer Programming, Special Issue: 12th European Symposium on Programming (ESOP 2003), 2004, 50(1-3), 189-224, DOI: 10.1016/j.scico.2004.01.004Google Scholar

  • [9] Zhang D., Myers A. C., Vytiniotis D., Peyton-Jones S., SHErrLoc: a static holistic error locator, ACM Trans. Program. Lang. Syst., 2017, 39(4), Article 18, DOI: 10.1145/3121137CrossrefGoogle Scholar

  • [10] Yang J., Michaelson G., Trinder P., Wells J. B., Improved type error reporting, In: Proceedings of 12th International Workshop on Implementation of Functional Languages, 2000, 71-86Google Scholar

  • [11] /u/GNULinuxProgrammer, /r/agda: R x → x == y → r y, 2016, https://www.reddit.com/r/agda/comments/7lq44q/r_x_x_y_r_y/ (Accessed: 2018-06-14)Google Scholar

  • [12] Watkins K., Cervesato I., Pfenning F., Walker D., A concurrent logical framework I: Judgments and properties, Technical Report CMU-CS-02-101, 2003, https://www.cs.cmu.edu/~fp/papers/CMU-CS-02-101.pdfGoogle Scholar

  • [13] Martin-Löf P., About models for intuitionistic type theories and the notion of definitional equality, in: Proceedings of the Third Scandinavian Logic Symposium, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam, Netherlands, Elsevier, New York, USA, 1975, 82, 81-109, DOI: 10.1016/S0049-237X(08)70727-4CrossrefGoogle Scholar

  • [14] Miller D., Unification under a mixed prefix, J. Symb. Comput., 1992, 14(4), 321-358, DOI: 10.1016/0747-7171(92)90011-RCrossrefGoogle Scholar

  • [15] Abel A., Pientka B., Higher-order dynamic pattern unification for dependent types and records, Typed Lambda Calculi and Applications, 10th International Conference (Novi Sad, Serbia), Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, 10-26, DOI: 10.1007/978-3-642-21691-6_5Google Scholar

  • [16] Norell U., Towards a practical programming language based on dependent type theory, Ph.D. thesis, Chalmers University of Technology, Gothenburg, Sweden, 2007, http://www.cse.chalmers.se/~ulfn/papers/thesis.pdfGoogle Scholar

  • [17] Cervesato I., Pfenning F., A linear spine calculus, Journal of Logic and Computation, 2003, 13(5), 639-688, DOI: 10.1093/logcom/ 13.5.639CrossrefGoogle Scholar

  • [18] Harper R., Honsell F., Plotkin G., A framework for defining logics, J. ACM, 1993, 40(1), 143-184, DOI: 10.1145/138027.138060CrossrefGoogle Scholar

  • [19] Ziliani B., Sozeau M., A comprehensible guide to a new unifier for CIC including universe polymorphism and overloading, Journal of Functional Programming, 2017, 27, e10, DOI: 10.1017/S0956796817000028Google Scholar

  • [20] Löh A., McBride C., Swierstra W., A tutorial implementation of a dependently typed lambda calculus, Fundamenta Informaticae, Special Issue on Dependently Typed Programming, 2010, 102(2), 177-207, DOI: 10.3233/FI-2010-304CrossrefGoogle Scholar

  • [21] Gundry A. M., Type inference, Haskell and dependent types, Ph.D. thesis, University of Strathclyde, Glasgow, Scotland, United Kingdom, 2013, http://adam.gundry.co.uk/pub/thesis/thesis-2013-12-03.pdfGoogle Scholar

  • [22] Gundry A., McBride C., A tutorial implementation of dynamic pattern unification, Unpublished draft, http://adam.gundry.co.uk/pub/pattern-unify/pattern-unification-2012-07-10.pdf, 2013Google Scholar

  • [23] Cockx J., Devriese D., Proof-relevant unification: Dependent pattern matching with only the axioms of your type theory, Journal of Functional Programming, 2018, 28, e12, DOI: 10.1017/S095679681800014XCrossrefGoogle Scholar

  • [24] Chen S., Erwig M., Walkingshaw E., An error-tolerant type system for variational lambda calculus, in: Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming (ICFP ’12), ACM, New York, NY, USA, 2012, 29-40, DOI: 10.1145/2364527.2364535CrossrefGoogle Scholar

  • [25] Erwig M.,WalkingshawE., The choice calculus: A representation for software variation, ACM Trans. Softw. Eng. Methodol., 2011, 21(1), Article 6, DOI: 10.1145/2063239.2063245CrossrefGoogle Scholar

  • [26] Chen S., Erwig M., Walkingshaw E., Extending type inference to variational programs, ACM Trans. Program. Lang. Syst., 2014, 36(1), Article 1, DOI: 10.1145/2518190CrossrefGoogle Scholar

  • [27] Eremondi J., Github repository: lambda-pi-constraint, tag thesis-final, 2016, https://github.com/JoeyEremondi/lambdapi-constraintGoogle Scholar

  • [28] Zhang D.,Myers A. C., Vytiniotis D., Peyton-Jones S., Diagnosing type errors with class, In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2015), ACM, New York, NY, USA, 2015, 12-21, DOI: 10.1145/2737924.2738009CrossrefGoogle Scholar

  • [29] Huet G. P., The undecidability of unification in third order logic, Information and Control, 1973, 22(3), 257-267, DOI: 10.1016/S0019-9958(73)90301-XCrossrefGoogle Scholar

  • [30] Huet G., A unification algorithm for typed λ-calculus, Theoretical Computer Science, 1975, 1(1), 27-57, DOI: 10.1016/0304-3975(75)90011-0CrossrefGoogle Scholar

  • [31] Cockx J., Devriese D., Piessens F., Pattern matching without K, In: Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (ICFP ’14), ACM, New York, NY, USA, 2014, 257-268, DOI: 10.1145/2628136.2628139CrossrefGoogle Scholar

  • [32] Cockx J., Devriese D., Piessens F., Unifiers as equivalences: Proof-relevant unification of dependently typed data, In: Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (ICFP 2016), ACM, New York, NY, USA, 2016, 270-283, DOI: 10.1145/2951913.2951917CrossrefGoogle Scholar

  • [33] Eremondi J., Improving error messages for dependent types with constraint-based unification, Master’s thesis, Utrecht University, Utrecht, Netherlands, 2016, https://dspace.library.uu.nl/handle/1874/337692Google Scholar

  • [34] Campora J. P., Chen S., Erwig M., Walkingshaw E., Migrating gradual types, Proceedings of the ACM on Programming Languages, 2018, 2(POPL), Article 15, DOI: 10.1145/3158103CrossrefGoogle Scholar

  • [35] Milner R., A theory of type polymorphism in programming, Journal of Computer and System Sciences, 1978, 17(3), 348-375, DOI: 10.1016/0022-0000(78)90014-4CrossrefGoogle Scholar

  • [36] Hage J., Heeren B., Strategies for solving constraints in type and effect systems, Electronic Notes in Theoretical Computer Science, 2009, 236, 163-183, DOI:10.1016/j.entcs.2009.03.021CrossrefGoogle Scholar

  • [37] Helium Team, Helium github repository, https://github.com/Helium4Haskell/helium, 2017Google Scholar

  • [38] Pavlinovic Z., King T., Wies T., Practical SMT-based type error localization, In: Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP’15), ACM, New York, NY, USA, 2015, 412-423, DOI: 10.1145/2784731.2784765.CrossrefGoogle Scholar

About the article

Received: 2018-06-29

Accepted: 2018-10-31

Published Online: 2019-01-24

Published in Print: 2019-01-01


Citation Information: Open Computer Science, Volume 9, Issue 1, Pages 1–32, ISSN (Online) 2299-1093, DOI: https://doi.org/10.1515/comp-2019-0001.

Export Citation

© 2019 Joseph Eremondi et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Comments (0)

Please log in or register to comment.
Log in