Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Computer Science

Editor-in-Chief: van den Broek, Egon


Covered by:
SCOPUS
Web of Science - Emerging Sources Citation Index


CiteScore 2018: 0.63
Source Normalized Impact per Paper (SNIP) 2018: 0.604

ICV 2018: 97.86

Open Access
Online
ISSN
2299-1093
See all formats and pricing
More options …

Feature extraction for license plate location based on L0-norm smoothing

Junqing Huang / Michael Ruzhanshy
  • University of Ghent, Belgium; Queen Mary; University of London, UK; Department of Mathematics, Imperial College London, UKLondon
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Haoxiang Feng / Lingfang Zheng / Xin Huang / Haihui Wang
Published Online: 2019-06-25 | DOI: https://doi.org/10.1515/comp-2019-0007

Abstract

We propose a simple feature extraction algorithm for license plate location, which can reduce the occurrence of pseudo-licenses significantly. Our scheme arises from a novel L0-norm image smoothing, in which the multiple local textures in the complex backgrounds can be suppressed remarkably without changing the structures and edges of the license objects. Due to this “edgeaware” property, we then combine a feature filtering with an efficient binarized image, a simple multi-scale image analysis algorithm, to remove the potential false license plates. Finally, we extract license plates with a projection method. Experimental results show the proposed method provides a flexible and powerful way to the license plate location in complex backgrounds.

Keywords: license plate location; L0-norm minimization; feature filtering; binarized image

References

  • [1] Du S., Ibrahim M., Shehata M. S., Badawy W. M., Automatic License Plate Recognition (ALPR): A state-of-the-art review, IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(2), 311–25CrossrefGoogle Scholar

  • [2] Wang T. H., Ni F. C., Li K. T., Chen Y. P., Robust license plate recognition based on dynamic projection warping, IEEE International Conference on Networking, Sensing and Control, 2004, 2, 784–788CrossrefGoogle Scholar

  • [3] Lee H. J., Chen S. Y., Wang S. Z., Extraction and recognition of license plates of motorcycles and vehicles on highways, In: Proceedings of the 17th International Conference on Pattern Recognition, 2004, ICPR 2004, 4, 356–359Google Scholar

  • [4] Zheng D., Zhao Y., Wang J., An efficient method of license plate location, Pattern Recognition Letters, 2005, 26(15), 2431–2438CrossrefGoogle Scholar

  • [5] Wu Y., Liu S., Wang X., License plate location method based on texture and color, In: 2013 IEEE 4th International Conference on Software Engineering and Service Science, 2013, 361–364Google Scholar

  • [6] Lee E. R., Kim P. K., Kim H. J., Automatic recognition of a car license plate using color image processing, In: Proceedings of 1st International Conference on Image Processing, 1994, 2, 301–305Google Scholar

  • [7] Shi X., ZhaoW., Shen Y., Automatic license plate recognition system based on color image processing, International Conference on Computational Science and Its Applications, 2015, 1159–1168Google Scholar

  • [8] Abolghasemi V., Ahmadyfard A., An edge-based color-aided method for license plate detection, Image and Vision Computing, 2009, 27(8), 1134–1142Google Scholar

  • [9] Huang S., The research and achievement of vehicle plate recognition, Phd thesis, Si Chuan University, Si Chuan, China, 2005Google Scholar

  • [10] Chen Z. X., Liu C. Y., Chang F. L., Wang G. Y., Automatic licenseplate location and recognition based on feature salience, IEEE Transactions on Vehicular Technology, 2009, 58(7), 3781–3785Google Scholar

  • [11] Lim H. W., Tay Y. H., Detection of license plate characters in natural scene with MSER and SIFT unigram classifier, In: 2010 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology, 2010, 95–98Google Scholar

  • [12] Kim K. K., Kim K. I., Kim J. B., Kim H. J., Learning-based approach for license plate recognition, In: Neural Networks for Signal Processing X, Proceedings of the 2000 IEEE Signal Processing Society Workshop, 2000, 2, 614–623Google Scholar

  • [13] Zhang H., Jia W., He X., Wu Q., Learning-based license plate detection using global and local features, In: 18th International Conference on Pattern Recognition, 2006, 2, 1102–1105Google Scholar

  • [14] Hu C., Bai X., Qi L., Chen P., Xue G., Mei L., Vehicle color recognition with spatial pyramid deep learning, IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5), 2925–2934Web of ScienceGoogle Scholar

  • [15] Selmi Z., Halima M. B., Alimi A. M., Deep learning system for automatic license plate detection and recognition, In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 2017, 1132–1138Google Scholar

  • [16] Polishetty R., Roopaei M., Rad P., A next-generation secure cloud-based deep learning license plate recognition for smart cities, In: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), 2016, 286–293Google Scholar

  • [17] Krizhevsky A., Sutskever I., Hinton G. E., ImageNet classification with deep convolutional neural networks, In: Advances in Neural Information Processing Systems, 2012, 25, 1097–1105Google Scholar

  • [18] LeCun Y., Yoshua B., Geoffrey H., Deep Learning, 2016Google Scholar

  • [19] Xu L., Lu C., Xu Y., Jia J., Image smoothing via L0 gradient minimization, ACM Transactions on Graphics, 2011, 30(6), Article 174Google Scholar

  • [20] Wang Y., Yang J., Yin W., Zhang Y., A new alternating minimization algorithm for total variation image reconstruction, Siam Journal on Imaging Sciences, 2008, 1(3), 248–272Google Scholar

  • [21] Paris S., Hasinoff S. W., Kautz J., Local Laplacian filters: Edgeaware image processing with a Laplacian pyramid, ACM Transactions on Graphics, 2011, 30(4), 68Web of ScienceGoogle Scholar

  • [22] Daubechies I., The wavelet transform, time-frequency localization and signal analysis, IEEE Transactions on Information Theory, 1990, 36(5), 961–1005CrossrefGoogle Scholar

  • [23] Cheng M. M., Zhang Z. M., Lin W. Y., BING: Binarized Normed Gradients for Objectness Estimation at 300fps, In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, 3286–3293Google Scholar

  • [24] He K., Sun J., Tang X., Single image haze removal using dark channel prior, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12), 2341–2353Google Scholar

  • [25] Martin F., Garcia M., Alba J. L., New methods for automatic reading of VLP’s (Vehicle License Plates), In: Proceedings of IASTED International Conference SPPRA, 2002, 26(6), 257–271Google Scholar

  • [26] Yu S., Li B., Zhang Q., Liu C., Meng M. Q. H., A novel license plate location method based on wavelet transform and EMD analysis, Pattern Recognition, 2015, 48(1), 114–125Web of ScienceGoogle Scholar

About the article

Received: 2018-07-10

Accepted: 2019-05-16

Published Online: 2019-06-25


Citation Information: Open Computer Science, Volume 9, Issue 1, Pages 128–135, ISSN (Online) 2299-1093, DOI: https://doi.org/10.1515/comp-2019-0007.

Export Citation

© 2019 Junqing Huang et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Comments (0)

Please log in or register to comment.
Log in