Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Concrete Operators

Ed. by Chalendar, Isabelle / Partington, Jonathan

1 Issue per year


Mathematical Citation Quotient (MCQ) 2016: 0.38


Emerging Science

Open Access
Online
ISSN
2299-3282
See all formats and pricing
More options …

Approximation numbers of composition operators on Hp

Daniel Li
  • Corresponding author
  • Univ Lille Nord de France, U-Artois, Laboratoire de Mathématiques de Lens EA 2462 & Fédération CNRS Nord-Pas-de-Calais FR 2956, Faculté des Sciences Jean Perrin, Rue Jean Souvraz, S.P. 18, 62300 Lens, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hervé Queffélec
  • Corresponding author
  • Univ Lille Nord de France, USTL, Laboratoire Paul Painlevé U.M.R. CNRS 8524 & Fédération CNRS Nord-Pasde- Calais FR 2956, 59655 Villeneuve d’Ascq Cedex, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luis Rodríguez-Piazza
  • Corresponding author
  • Universidad de Sevilla, Facultad de Matemáticas, Departamento de Análisis Matemático & IMUS, Apartado de Correos 1160, 41080 Sevilla, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-07-22 | DOI: https://doi.org/10.1515/conop-2015-0005

Abstract

give estimates for the approximation numbers of composition operators on the Hp spaces, 1 ≤ p < ∞

Keywords : approximation numbers; Blaschke product; composition operator; Hardy space; interpolation sequence

References

  • [1] B. Carl, A. Hinrichs, Optimal Weyl-type inequalities for operators in Banach spaces, Positivity 11 (2007), 41–55. Web of ScienceCrossrefGoogle Scholar

  • [2] B. Carl, I. Stephani, Entropy, Compactness and the Approximation of Operators, Cambridge Tracts in Mathematics, Vol. 98 (1990). Google Scholar

  • [3] B. Carl, H. Triebel, Inequalities between eigenvalues, entropy numbers, and related quantities of compact operators in Banach spaces, Math. Ann. 251 (1980), 129–133. Google Scholar

  • [4] P. L. Duren, Theory of Hp Spaces, Dover Public. (2000). Google Scholar

  • [5] J. Garnett, Bounded Analytic Functions, revised first edition, Graduate Texts in Mathematics 236, Springer-Verlag (2007). Google Scholar

  • [6] K. Hoffman, Banach Spaces of Analytic Functions, revised first edition, Prentice-Hall (1962). Google Scholar

  • [7] C. V. Hutton, On the approximation numbers of an operator and its adjoint, Math. Ann. 210 (1974), 277–280. Google Scholar

  • [8] P. Lefèvre, D. Li, H. Queffélec, L. Rodríguez-Piazza, Some new properties of composition operators associated to lensmaps, Israel J. Math. 195 (2) (2013), 801–824. Google Scholar

  • [9] D. Li and H. Queffélec, Introduction à l’étude des espaces de Banach. Analyse et probabilités, Cours Spécialisés 12, Société Mathématique de France, Paris (2004). Google Scholar

  • [10] D. Li, H. Queffélec, L. Rodríguez-Piazza, On approximation numbers of composition operators, J. Approx. Theory 164 (4) (2012), 431–459. Web of ScienceGoogle Scholar

  • [11] D. Li, H. Queffélec, L. Rodríguez-Piazza, Estimates for approximation numbers of some classes of composition operators on the Hardy space, Ann. Acad. Sci. Fenn. Math. 38 (2013), 547–564. Web of ScienceGoogle Scholar

  • [12] D. Li, H. Queffélec, L. Rodríguez-Piazza, A spectral radius type formula for approximation numbers of composition operators, J. Funct. Anal., 267 (2014), no. 12, 4753–4774. Google Scholar

  • [13] R. Mortini, Thin interpolating sequences in the disk, Arch. Math. 92, no. 5 (2009), 504–518. Web of ScienceGoogle Scholar

  • [14] N. Nikol’skiˇı, A treatise on the Shift Operator, Grundlehren der Math. 273, Springer-Verlag (1986). Google Scholar

  • [15] S. Petermichl, S. Treil, B.D. Wick, Carleson potentials and the reproducing kernel thesis for embedding theorems, Illinois J. Math. 51, no. 4 (2007), 1249–1263. Google Scholar

  • [16] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. LI (1974), 201–223. Google Scholar

  • [17] A. Plichko, Rate of decay of the Bernstein numbers, Zh. Mat. Fiz. Anal. Geom. 9, no. 1 (2013), 59–72. Google Scholar

  • [18] H. Queffélec, K. Seip, Decay rates for approximation numbers of composition operators, J. Anal. Math., 125 (2015), no. 1, 371–399. Google Scholar

About the article

Received: 2015-02-23

Accepted: 2015-07-07

Published Online: 2015-07-22


Citation Information: Concrete Operators, ISSN (Online) 2299-3282, DOI: https://doi.org/10.1515/conop-2015-0005.

Export Citation

© 2015 Daniel Li et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
FRÉDÉRIC BAYART, DANIEL LI, HERVÉ QUEFFÉLEC, and LUIS RODRÍGUEZ–PIAZZA
Mathematical Proceedings of the Cambridge Philosophical Society, 2017, Page 1

Comments (0)

Please log in or register to comment.
Log in