Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Concrete Operators

Ed. by Ross, William / Mashreghi, Javad

1 Issue per year

Mathematical Citation Quotient (MCQ) 2017: 0.34

Open Access
See all formats and pricing
More options …

Essential spectra of weighted composition operators with hyperbolic symbols

Olli Hyvärinen
  • Corresponding author
  • Department of Mathematical Sciences, P.O. Box 3000, 90014 University of Oulu, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ilmari Nieminen
  • Corresponding author
  • Department of Mathematical Sciences, P.O. Box 3000, 90014 University of Oulu, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-08-21 | DOI: https://doi.org/10.1515/conop-2015-0006


In this paperwe study both the spectra and the essential spectra ofweighted composition operators on Hardy spaces Hp(ⅅ), standard weighted Bergman spaces Apα(ⅅ) and weighted H1-type spaces when the symbols are of hyperbolic type

Keywords: Weighted composition operator; spectrum; essential spectrum; Hardy spaces; weighted Bergman spaces


  • [1] Y.A. Abramovich, C.D. Aliprantis, An invitation to operator theory, Graduate Studies inMathematics, Vol. 50, AmericanMathematical Society, Rhode Island, 2002. Google Scholar

  • [2] K. Bierstedt, W. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), 70–79. CrossrefGoogle Scholar

  • [3] J. Bonet, P. Domanski, M. Lindström, Weakly compact composition operators on analytic vector-valued function spaces, Ann. Acad. Sci. Fenn. Math. 26 (2001), 233–248. Google Scholar

  • [4] P. Bourdon, Spectra of some composition operators and associated weighted composition operators, J. Operator Theory 67 (2012), 537–560. Google Scholar

  • [5] P. Bourdon, Spectra of composition operators with symbols in S(2), arXiv:1401.2680 [math.FA] Google Scholar

  • [6] C. Cowen, Composition operators on H2, J. Operator Theory 9 (1983), 77–106. Google Scholar

  • [7] C. Cowen, B. MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, 1995. Google Scholar

  • [8] C. Cowen, E. Ko, D. Thompson, F. Tian, Spectra of some weighted composition operators on H2, arXiv:1405.5173 [math.FA] Google Scholar

  • [9] P. Domanski, M. Lindström, Sets of interpolation and sampling for weighted Banach spaces of holomorphic functions, Ann. Polon. Math. 79 (2002), 233–264. Google Scholar

  • [10] P.L. Duren, Theory of Hp spaces, Academic Press, 1970. Google Scholar

  • [11] P.L. Duren, A. Schuster, Bergman spaces,Mathematical Surveys and Monographs Vol. 100, AmericanMathematical Society, 2004. Google Scholar

  • [12] G. Gunatillake, Invertible weighted composition operators, J. Funct. Anal. 261 (2011), 831–860. Google Scholar

  • [13] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Springer, 2000. Google Scholar

  • [14] O. Hyvärinen, M. Lindström, I. Nieminen, E. Saukko, Spectra of weighted composition operators with automorphic symbols, J. Funct. Anal. 265 (2013), 1749–1777. Web of ScienceGoogle Scholar

  • [15] H. Kamowitz, The spectra of a class of operators on the disc algebra, Indiana Univ. Math. J. 27 (1978), 581–610. CrossrefGoogle Scholar

  • [16] M. Möller, On the essential spectrum of a class of operators in Hilbert space, Math. Nachr. 194 (1998), 185–196. Google Scholar

  • [17] V. Müller, Spectral theory of linear operators, Birkhäuser, 2003. Google Scholar

  • [18] J.H. Shapiro, Composition operators and classical function theory, Springer, 1993. Google Scholar

About the article

Received: 2015-04-08

Accepted: 2015-08-07

Published Online: 2015-08-21

Citation Information: Concrete Operators, Volume 2, Issue 1, ISSN (Online) 2299-3282, DOI: https://doi.org/10.1515/conop-2015-0006.

Export Citation

© 2015 Olli Hyvärinen and Ilmari Nieminen. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in