Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Concrete Operators

Ed. by Chalendar, Isabelle / Partington, Jonathan

1 Issue per year


Mathematical Citation Quotient (MCQ) 2016: 0.38


Emerging Science

Open Access
Online
ISSN
2299-3282
See all formats and pricing
More options …

An introduction to Rota’s universal operators: properties, old and new examples and future issues

Carl C. Cowen / Eva A. Gallardo-Gutiérrez
  • Corresponding author
  • Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense de Madrid e ICMAT, Plaza de Ciencias 3, 28040, Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-14 | DOI: https://doi.org/10.1515/conop-2016-0006

Abstract

The Invariant Subspace Problem for Hilbert spaces is a long-standing question and the use of universal operators in the sense of Rota has been an important tool for studying such important problem. In this survey, we focus on Rota’s universal operators, pointing out their main properties and exhibiting some old and recent examples.

Keywords: Rota’s universal operators; Invariant subspace; Analytic Toeplitz operator; Lomonosov’s Theorem

References

  • [1] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81(1949), 239–255. Google Scholar

  • [2] S. R. Caradus, Universal operators and invariant subspaces, Proc. Amer. Math. Soc. 23(1969), 526–527. CrossrefGoogle Scholar

  • [3] I. Chalendar and J. R. Partington, Modern Approaches to the Invariant Subspace Problem, Cambridge University Press, 2011. Google Scholar

  • [4] C. C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc. 239(1978), 1–31. Google Scholar

  • [5] C. C. Cowen, The commutant of an analytic Toeplitz operator, II, Indiana Math. J. 29(1980), 1–12. Google Scholar

  • [6] C. C. Cowen, An analytic Toeplitz operator that commutes with a compact operator and a related class of Toeplitz operators, J. Functional Analysis 36(1980), 169–184. Google Scholar

  • [7] C. C. Cowen and E. A. Gallardo-Gutiérrez, Unitary equivalence of one-parameter groups of Toeplitz and composition operators, J. Functional Analysis 261(2011), 2641–2655. Web of ScienceGoogle Scholar

  • [8] C. C. Cowen and E. A. Gallardo-Gutiérrez, Rota’s universal operators and invariant subspaces in Hilbert spaces, to appear. Google Scholar

  • [9] C. C. Cowen and E. A. Gallardo-Gutiérrez, Consequences of Universality Among Toeplitz Operators, J. Math. Anal. Appl. 432(2015), 484–503. Google Scholar

  • [10] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972. Google Scholar

  • [11] R. G. Douglas, H. S. Shapiro, and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble) 20(1970), 37–76. CrossrefGoogle Scholar

  • [12] P. L. Duren Theory of Hp Spaces, Academic Press, New York, 1970; reprinted with supplement by Dover Publications, Mineola, N˙Y ˙ , 2000. Google Scholar

  • [13] Enflo, P., On the invariant subspace problem in Banach spaces, Acta Math. 158(1987), 213–313. Google Scholar

  • [14] E. A. Gallardo-Gutiérrez and P. Gorkin, Minimal invariant subspaces for composition operators, J. Math. Pure Appl. 95(2011), 245–259. Google Scholar

  • [15] D. W. Hadwin, E. A. Nordgren, H. Radjavi and P. Rosenthal, An operator not satisfying Lomonosov hypotheses, J. Functional Analysis 38(1980), 410–415. Google Scholar

  • [16] K. Hoffman, Banach spaces of analytic functions, Dover Publication, Inc., 1988. Google Scholar

  • [17] V. Lomonosov, On invariant subspaces of families of operators commuting with a completely continuous operator, Funkcional Anal. i Prilozen 7(1973) 55-56 (Russian). Google Scholar

  • [18] B. Sz-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland Publishing Co., 1970. Google Scholar

  • [19] N. K. Nikolski, Operators, Functions, and Systems: An Easy Reading, Volume 1: Hardy, Hankel and Toeplitz, Mathematical Surveys and Monographs 92, American Mathematical Society, 2002. Google Scholar

  • [20] N. K. Nikolski, Personal communication. Google Scholar

  • [21] E. A. Nordgren, P. Rosenthal, and F. S. Wintrobe, Composition operators and the invariant subspace problem, C. R. Mat. Rep. Acad. Sci. Canada, 6(1984), 279–282. Google Scholar

  • [22] E. A. Nordgren, P. Rosenthal, and F. S. Wintrobe, Invertible composition operators on Hp, J. Functional Analysis 73(1987), 324– 344. Web of ScienceGoogle Scholar

  • [23] J. R. Partington and E. Pozzi, Universal shifts and composition operators, Oper. Matrices 5(2015), 455–467. Google Scholar

  • [24] H. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag, New York, 1973. Google Scholar

  • [25] Read, C. J., A solution to the invariant subspace problem on the space `1, Bull. London Math. Soc. 17(1985), 305–317. Google Scholar

  • [26] Read, C. J., The invariant subspace problem for a class of Banach spaces. II. Hypercyclic operators, Israel J. Math. 63(1988), 1–40. Google Scholar

  • [27] G.-C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13(1960), 469–472. Google Scholar

About the article

Received: 2015-12-03

Accepted: 2016-01-26

Published Online: 2016-04-14


Citation Information: Concrete Operators, ISSN (Online) 2299-3282, DOI: https://doi.org/10.1515/conop-2016-0006.

Export Citation

© 2016 Cowen and Gallardo-Gutiérrez. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in