Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Concrete Operators

Ed. by Ross, William / Mashreghi, Javad

1 Issue per year


Mathematical Citation Quotient (MCQ) 2017: 0.34

Open Access
Online
ISSN
2299-3282
See all formats and pricing
More options …

Vector-valued holomorphic and harmonic functions

Wolfgang Arendt
Published Online: 2016-04-28 | DOI: https://doi.org/10.1515/conop-2016-0007

Abstract

Holomorphic and harmonic functions with values in a Banach space are investigated. Following an approach given in a joint article with Nikolski [4] it is shown that for bounded functions with values in a Banach space it suffices that the composition with functionals in a separating subspace of the dual space be holomorphic to deduce holomorphy. Another result is Vitali’s convergence theorem for holomorphic functions. The main novelty in the article is to prove analogous results for harmonic functions with values in a Banach space.

Keywords: Holomorphic functions; Banach space; Harmonic functions; Dirichlet problem; Vitali’s Theorem

References

  • [1] H. Amann: Elliptic operators with infinite-dimensional state space. J. Evol. Equ 1 (2001), 143–188. CrossrefGoogle Scholar

  • [2] W. Arendt, C. Batty, M. Hieber, F. Neubrander: Vector-valued Laplace Transforms and Cauchy Problems. Second edition. Birkhäuser Basel (2011) Google Scholar

  • [3] W. Arendt, A.F.M. ter Elst: From forms to semigroups. Oper. Theory Adv. Appl. 221, 47–69. Google Scholar

  • [4] W. Arendt, N. Nikolski: Vector-valued holomorphic functions revisited. Math. Z. 234 (2000), no. 4, 777–805. Google Scholar

  • [5] W. Arendt, N. Nikolski: Addendum: Vector-valued holomorphic functions revisited. Math. Z. 252 (2006), 687–689. Google Scholar

  • [6] S. Axler; P. Bourdon, W. Ramey: Harmonic Function Theory. Springer, Berlin 1992. Google Scholar

  • [7] J. Bonet, L. Frerick, E. Jordá: Extension of vector-valued holomorphic and harmonic functions. Studia Math. 183 (2007), 225–248. Web of ScienceGoogle Scholar

  • [8] J. Diestel, J.J. Uhl: Vector Measures. Amer. Math. Soc. Providence 1977. Google Scholar

  • [9] K.-G. Grosse-Erdmann: The Borel-Ohada theorem revisited. Habilitationsschrift Hagen 1992. Google Scholar

  • [10] K.-G. Grosse-Erdmann: A weak criterion for vector-valued holomorphy. Math. Proc. Cambridge Philos. Soc. 136 (2004), 399–411. Google Scholar

  • [11] T. Kato: Perturbation Theory for Linear Operators. Springer, Berlin 1995. Google Scholar

  • [12] M. Yu. Kokwin: Sets of Uniqueness for Harmonic and Analytic Functions and diverse Problems for Wave equations. Math. Notes. 97 (2015), 376–383. Google Scholar

  • [13] T. Ransford: Potential Theory in the Complex Plane. London Math. Soc., Cambridge University Press 1995. Google Scholar

  • [14] R. Remmert: Funktionentheorie 2. Springer, Berlin 1992. Google Scholar

  • [15] A. Tonolo: Commemorazione di Giuseppe Vitali. Rendiconti Sem. Matem. Univ. Padova 3 (1932), 37–81. Google Scholar

  • [16] V. Wrobel: Analytic functions into Banach spaces and a new characterisation of isomorphic embeddings.. Proc. Amer. Math. Soc. (1982), 539–543. CrossrefGoogle Scholar

About the article

Received: 2015-11-25

Accepted: 2016-03-08

Published Online: 2016-04-28


Citation Information: Concrete Operators, Volume 3, Issue 1, Pages 68–76, ISSN (Online) 2299-3282, DOI: https://doi.org/10.1515/conop-2016-0007.

Export Citation

© 2016 Wolfgang Arendt. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in