Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Concrete Operators

Ed. by Ross, William / Mashreghi, Javad

1 Issue per year


Mathematical Citation Quotient (MCQ) 2017: 0.34

Open Access
Online
ISSN
2299-3282
See all formats and pricing
More options …

Invertible and normal composition operators on the Hilbert Hardy space of a half–plane

Valentin Matache
Published Online: 2016-05-16 | DOI: https://doi.org/10.1515/conop-2016-0009

Abstract

Operators on function spaces of form Cɸf = f ∘ ɸ, where ɸ is a fixed map are called composition operators with symbol ɸ. We study such operators acting on the Hilbert Hardy space over the right half-plane and characterize the situations when they are invertible, Fredholm, unitary, and Hermitian. We determine the normal composition operators with inner, respectively with Möbius symbol. In select cases, we calculate their spectra, essential spectra, and numerical ranges.

Keywords: Composition operator; Hardy space; Half–plane

References

  • [1] Bourdon P. S., Matache V., Shapiro J. H., On convergence to the Denjoy-Wolff point, Illinois J. Math. 49 (2005), no. 2, 405-430. Google Scholar

  • [2] Bourdon P. S., Narayan S. K., Normal weighted composition operators on the Hardy space H2.U/, J. Math. Anal. Appl. 367(2010), 278-286. Google Scholar

  • [3] Cowen, C. C., Ko, E., Hermitian weighted composition operators on H2, Trans. Amer. Math. Soc., 362(2010), no. 11, 5771-5801. Google Scholar

  • [4] Duren P., Theory of Hp Spaces, Pure and Applied Mathematics, Vol. 38 Academic Press, New York–London 1970. Google Scholar

  • [5] Elliott S., Jury M. T., Composition operators on Hardy spaces of a half-plane, Bull. Lond. Math. Soc. 44 (2012), no. 3, 489-495. Google Scholar

  • [6] Gunatillake G., Invertible weighted composition operators, J. Funct. Anal. 261 (2011), no. 3, 831-860. Google Scholar

  • [7] Hoffman K., Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1962. Google Scholar

  • [8] Hyvarinen O., Lindstrom M., Nieminen I., Saukko E., Spectra of weighted composition operators with automorphic symbols, J. Funct. Anal. 265 (2013), 1749-1777. Web of ScienceGoogle Scholar

  • [9] Matache V., Composition operators on Hp of the upper half-plane, An. Univ. Timis¸oara Ser. S¸ tiin¸t. Mat. 27 (1989), no. 1, 63-66. Google Scholar

  • [10] Matache V., Notes on hypercyclic operators, Acta Sci. Math. (Széged) 58(1993), no. 1-4, 401-410. Google Scholar

  • [11] Matache V., Composition operators on Hardy spaces of a half-plane, Proc. Amer. Math. Soc. 127 (1999), no. 5, 1483-1491. Google Scholar

  • [12] Matache V., Weighted composition operators on H2 and applications, Complex Anal. Oper. Theory 2 (2008), no. 1, 169-197. CrossrefGoogle Scholar

  • [13] Matache V., Numerical ranges of composition operators with inner symbols, Rocky Mountain J. Math. 42(2012), no. 1, 235-249. Google Scholar

  • [14] Matache V., Isometric weighted composition operators, New York J. Math. 20(2014), 711-726. Google Scholar

  • [15] Nordgren E. A., Composition operators, Canad. J. Math. 20(1968), 442-449. Google Scholar

About the article

Received: 2015-10-09

Accepted: 2016-04-27

Published Online: 2016-05-16


Citation Information: Concrete Operators, Volume 3, Issue 1, Pages 77–84, ISSN (Online) 2299-3282, DOI: https://doi.org/10.1515/conop-2016-0009.

Export Citation

© 2016 Valentin Matache. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in