Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Concrete Operators

Ed. by Ross, William / Mashreghi, Javad

1 Issue per year


Mathematical Citation Quotient (MCQ) 2017: 0.34

Open Access
Online
ISSN
2299-3282
See all formats and pricing
More options …

Multipliers of sequence spaces

Raymond Cheng / Javad Mashreghi / William T. Ross
Published Online: 2017-10-18 | DOI: https://doi.org/10.1515/conop-2017-0007

Abstract

This paper is selective survey on the space lAp and its multipliers. It also includes some connections of multipliers to Birkhoff-James orthogonality

Keywords: Sequence spaces; Multipliers; Hardy spaces; Inner functions

MSC 2010: 30J10; 30J15; 30H10; 30B10

References

  • [1] Evgeny Abakumov and Alexander Borichev. Shift invariant subspaces with arbitrary indices in lp spaces. J. Funct. Anal., 188(1):1-26, 2002.CrossrefGoogle Scholar

  • [2] J. Alonso, H. Martini, and S. Wu. On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces. Aequationes Math., 83(1-2):153-189, 2012.Web of ScienceGoogle Scholar

  • [3] G. I. Arkhipov, A. A. Karatsuba, and V. N. Chubarikov. Teoriya kratnykh trigonometricheskikh summ. “Nauka”, Moscow, 1987.Google Scholar

  • [4] N. L. Carothers. A Short Course on Banach Space Theory, volume 64 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2005.Google Scholar

  • [5] R. Cheng and W. T. Ross. An inner-outer factorization in `p with applications to ARMA processes. J. Math. Anal. Appl., 437:396-418, 2016.Web of ScienceGoogle Scholar

  • [6] Karel de Leeuw. On Lp multipliers. Ann. of Math. (2), 81:364-379, 1965.Google Scholar

  • [7] Peter L. Duren. Theory of Hp Spaces. Pure and Applied Mathematics, Vol. 38. Academic Press, New York-London, 1970.Google Scholar

  • [8] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi. Higher transcendental functions. Vol. I. Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman, With a preface by Mina Rees, With a foreword by E. C. Watson, Reprint of the 1953 original.Google Scholar

  • [9] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi. Higher transcendental functions. Vol. II. Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman, Reprint of the 1953 original.Google Scholar

  • [10] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi. Higher transcendental functions. Vol. III. Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman, Reprint of the 1955 original.Google Scholar

  • [11] S. R. Garcia, J. Mashreghi, and W. Ross. Introduction to model spaces and their operators. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2016.Google Scholar

  • [12] Lars Hörmander. Estimates for translation invariant operators in Lp spaces. Acta Math., 104:93-140, 1960.CrossrefGoogle Scholar

  • [13] R. C. James. Orthogonality and linear functionals in normed linear spaces. Trans. Amer. Math. Soc., 61:265-292, 1947.CrossrefGoogle Scholar

  • [14] V. Lebedev and A. Olevskiĭ. Idempotents of Fourier multiplier algebra. Geom. Funct. Anal., 4(5):539-544, 1994.CrossrefGoogle Scholar

  • [15] V. V. Lebedev. Inner functions and lp-multipliers. Funktsional. Anal. i Prilozhen., 32(4):10-21, 95, 1998.Google Scholar

  • [16] V. V. Lebedev. Spectra of inner functions and lp-multipliers. In Complex analysis, operators, and related topics, volume 113 of Oper. Theory Adv. Appl., pages 205-212. Birkhäuser, Basel, 2000.Google Scholar

  • [17] V. V. Lebedev and A. M. Olevskiĭ. Fourier Lp-multipliers with bounded powers. Izv. Ross. Akad. Nauk Ser. Mat., 70(3):129-166, 2006.Google Scholar

  • [18] Vladimir Lebedev and Alexander Olevskiĭ. Bounded groups of translation invariant operators. C. R. Acad. Sci. Paris Sér. I Math., 322(2):143-147, 1996.Google Scholar

  • [19] M. Marden. Geometry of Polynomials, 2nd Ed. Mathematical Surveys, No. 3. American Mathematical Society: Providence, RI, 1966.Google Scholar

  • [20] Javad Mashreghi. Representation theorems in Hardy spaces, volume 74 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2009.Google Scholar

  • [21] N. K. Nikol’skiĭ. On spaces and algebras of Toeplitz matrices operating in lp. Sibirsk. Mat. Ž., 7:146-158, 1966.Google Scholar

  • [22] J. Michael Steele. The Cauchy-Schwarz master class. MAA Problem Books Series. Mathematical Association of America, Washington, DC; Cambridge University Press, Cambridge, 2004. An introduction to the art of mathematical inequalities.Google Scholar

  • [23] I. È. Verbickiĭ. Multipliers of spaces lp A . Funktsional. Anal. i Prilozhen., 14(3):67-68, 1980.Google Scholar

  • [24] S. A. Vinogradov. Multipliers of power series with sequence of coefficients from lp. Zap. Nauˇcn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 39:30-39, 1974. Investigations on linear operators and the theory of functions, IV.Google Scholar

  • [25] S. A. Vinogradov. Multiplicative properties of power series with a sequence of coefficients from lp. Dokl. Akad. Nauk SSSR, 254(6):1301-1306, 1980.Google Scholar

  • [26] A. Zygmund. Trigonometric Series. Vol. I, II. Cambridge Mathematical Library. Cambridge University Press, Cambridge, third edition, 2002. With a foreword by Robert A. Fefferman.Google Scholar

About the article

Received: 2016-10-26

Accepted: 2017-09-05

Published Online: 2017-10-18

Published in Print: 2017-10-26


Citation Information: Concrete Operators, Volume 4, Issue 1, Pages 76–108, ISSN (Online) 2299-3282, DOI: https://doi.org/10.1515/conop-2017-0007.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in