Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Concrete Operators

Ed. by Ross, William / Mashreghi, Javad

1 Issue per year


Mathematical Citation Quotient (MCQ) 2017: 0.34

Open Access
Online
ISSN
2299-3282
See all formats and pricing
More options …

Toeplitz operators and Wiener-Hopf factorisation: an introduction

M. Cristina Câmara
  • Center for Mathematical Analysis, Geometry, and Dynamical Systems, Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-11-09 | DOI: https://doi.org/10.1515/conop-2017-0010

Abstract

Wiener-Hopf factorisation plays an important role in the theory of Toeplitz operators. We consider here Toeplitz operators in the Hardy spaces Hp of the upper half-plane and we review how their Fredholm properties can be studied in terms of a Wiener-Hopf factorisation of their symbols, obtaining necessary and sufficient conditions for the operator to be Fredholm or invertible, as well as formulae for their inverses or one-sided inverses when these exist. The results are applied to a class of singular integral equations in L−1(ℝ)

Keywords: Toeplitz operator; Wiener-Hopf factorisation; Singular integral equations

MSC 2010: 45E10; 47A68; 47B35

References

  • [1] L. V. Ahlfors, Complex analysis, 2nd edition ( McGraw-Hill, New York, 1966)Google Scholar

  • [2] H. Bart, V.È. Tsekanovski˘ı, Matricial coupling and equivalence after extension, In: T. Ando, I. Gohberg (Ed.), Operator Theory and Complex Analysis, OT 59 (Birkhäuser, Basel, 1992)Google Scholar

  • [3] A. Böttcher, B. Silberman., Analysis of Toeplitz Operators, 2nd edition (Springer-Verlag, Berlin, 2006)Google Scholar

  • [4] M.C. Câmara, C. Diogo , L. Rodman, Fredholmness of Toeplitz operators and corona problems, J. Funct. Anal. 5, 259 (2010)Google Scholar

  • [5] K. Clancey, I. Gohberg, Factorization of Matrix Functions and Singular Integral Operators (Birkhäuser, Basel-Boston-Stuttgart, 1981)Google Scholar

  • [6] R. Duduchava, Integral equations in convolution with discontinuous presymbols, singular integral equations with fixed singularities, and their applications to some problems of mechanics (Teubner, Leipzig, 1979)Google Scholar

  • [7] P. L. Duren, Theory of Hp spaces (Dover, New York, 2000)Google Scholar

  • [8] I. Gohberg, I. Feldman, Convolution equations and projection methods for their solutions, Transl. Math. Monographs, vol. 41 (Amer. Math. Soc., Providence, 1974)Google Scholar

  • [9] I. Gohberg, S. Goldberg, M. Kaashoek, Basic Classes of Linear Operators (Birkhäuser , Basel, Boston, Berlin 2003)CrossrefGoogle Scholar

  • [10] I. Gohberg, N. Krupnik, One-dimensional linear singular integral equations, Vols. I and II (Birkhäuser, Basel, 1992)Google Scholar

  • [11] I. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products, 5th edition (Academic Press, New York, 1994)Google Scholar

  • [12] G. S. Litvinchuk, I. M. Spitkovskii, Factorization of measurable matrix functions, OT 25 (Birkhäuser, Basel, 1987)Google Scholar

  • [13] S.G. Mikhlin, S. Prössdorf, Singular integral operators (Springer-Verlag, Berlin, 1986)Google Scholar

  • [14] G. O. Okikiolu, Aspects of the Theory of Bounded Integral Operators in Lp-spaces (Academic Press, New York, 1971)Google Scholar

  • [15] S. Prössdorf, Some Classes of Singular Equations (North-Holland, Amsterdam, 1978)Google Scholar

  • [16] M. Riesz, Sur les fonctions conjuguées, Math. Z., 2, 27 (1927)Google Scholar

  • [17] H. Widom, Singular integral equations in Lp, Trans. Amer. Math. Soc., 97 (1960)Google Scholar

About the article

Received: 2017-03-22

Accepted: 2017-09-06

Published Online: 2017-11-09

Published in Print: 2017-11-27


Citation Information: Concrete Operators, Volume 4, Issue 1, Pages 130–145, ISSN (Online) 2299-3282, DOI: https://doi.org/10.1515/conop-2017-0010.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
G. L. Cardoso and J. C. Serra
Journal of High Energy Physics, 2018, Volume 2018, Number 3

Comments (0)

Please log in or register to comment.
Log in