Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Corrosion Reviews

Editor-in-Chief: Latanision, Ronald M. / Rebak, Raúl B.


IMPACT FACTOR 2018: 2.528

CiteScore 2018: 2.24

SCImago Journal Rank (SJR) 2018: 0.518
Source Normalized Impact per Paper (SNIP) 2018: 1.203

Online
ISSN
2191-0316
Alle Formate und Preise
Weitere Optionen …
Band 33, Heft 1-2

Hefte

Novel Schiff base amino acid as corrosion inhibitors for carbon steel in CO2-saturated 3.5% NaCl solution: experimental and computational study

Hany M. Abd El-Lateef / Mohamed Ismael / Ibrahim M.A. Mohamed
Online erschienen: 13.02.2015 | DOI: https://doi.org/10.1515/corrrev-2014-0059

Abstract

The corrosion inhibition and adsorption behavior of some novel Schiff bases based on amino acids on carbon steel in CO2-saturated 3.5% NaCl solution at 50°C was investigated using gravimetric, potentiodynamic polarization, linear polarization resistance corrosion rate, and scanning electron microscope (SEM)/energy-dispersive X-ray spectroscopy analysis (EDAX) techniques. Results show that the inhibition efficiency increases when the inhibitor concentration increases. Potentiodynamic polarization curves reveal that the used Schiff bases are mixed-type inhibitors. Experimental data indicate that these Schiff base inhibitors adsorb at the carbon steel/solution interface according the Langmuir adsorption isotherm. SEM/EDAX was used to examine the surface morphology of carbon steel samples in the absence and presence of the inhibitors. Quantum chemical calculations were further applied to explain the experimental results.

Keywords: chemisorption; corrosion inhibition; EDAX; quantum chemical calculations; Schiff bases; SEM

References

  • Abd El-wahed MG, Hassan AM, Hammad HA, El-Desouky MM. The electrical conductivity of O-amino benzoic acid hydrazide and its complexes with Co2+, Ni 2+ & Cu2+. Bull Korean Chem Soc 1992; 13: 113–116.Google Scholar

  • Abd EL-Rehim SS, Ibrahim MAM, Khaled KF. 4-Aminoantipyrine as an inhibitor of mild steel corrosion in HCl solution. J Appl Electrochem 1999; 29: 593–599.Google Scholar

  • Abd El-Lateef HM, Aliyeva LI, Abbasov VM, Ismayilov IT, Ismayilova XR. Development of new eco-friendly corrosion inhibitors based on vegetable oils for protection from CO2 corrosion. Chem J 2012; 2: 37–51.Google Scholar

  • Abd El-Lateef HM, Abbasov VM, Aliyeva LI, Ismayilov IT, Qasimov EE. Efficient complex surfactants from the type of fatty acids as corrosion inhibitors for mild steel C1018 in CO2-environments. J Korean Chem Soc 2013a; 57: 25–34.Google Scholar

  • Abd El-Lateef HM, Abbasov VM, Aliyeva LI, Qasimov EE, Ismayilov IT. Inhibition of carbon steel corrosion in CO2-saturated brine using some newly surfactants based on palm oil: Experimental and theoretical investigations. Mater Chem Phys 2013b; 142: 502–512.Google Scholar

  • Abd El-Lateef HM, Ismayilov IT, Abbasov VM, Aliyeva LI, Qasimov EE, Efremenko EN, Ismayilov TA, Mamedxanova SA. Inhibition effects of some novel surfactants based on corn oil and diethanolamine on mild steel corrosion in chloride solutions saturated with CO2. Int J Thin Film Sci Tec 2013c; 2: 91–105.Google Scholar

  • Abdel-Gaber AM, Khamis E, Abo-El Dahab H, Adeel S. Inhibition of aluminium corrosion in alkaline solutions using natural compound. Mater Chem Phys 2008; 109: 297–305.CrossrefGoogle Scholar

  • Akbarzadeh E, Ibrahim MNM, Rahim AA. Corrosion inhibition of mild steel in near neutral solution by kraft and soda lignins extracted from oil palm empty fruit bunch. Int J Electrochem Sci, 2011; 6: 5396–5416.Google Scholar

  • Ashassi-Sorkhabi H, Shaabani B, Seifzadeh D. Corrosion inhibition of mild steel by some Schiff base compounds in hydrochloric acid. Appl Surf Sci 2005; 239: 154–164.CrossrefGoogle Scholar

  • Aytaç A, Özmen Ü, Kabasakaloğlu M. Investigation of some Schiff bases as acidic corrosion of alloy AA3102. Mater Chem Phys 2005; 89: 176–181.Google Scholar

  • Bastidas JM, Pinilla P, Cano E, Polo JL, Miguel S. Copper corrosion inhibition by triphenylmethane derivatives in sulphuric acid media. Corros Sci 2003; 45: 427–449.CrossrefGoogle Scholar

  • Biradar NS, Kulkarni VH. A spectroscopic study of tin(IV) complexes with bidentate Schiff bases. J Inorg Nucl Chem 1971; 33: 2451–2457.CrossrefGoogle Scholar

  • Biradar NS, Karajagi GV, Aminabhavi TM. Schiff base complexes of dimethyldichlorosilane. Inorg Chim Acta 1984; 82: 211–214.CrossrefGoogle Scholar

  • Boghaei DM, Gharagozlou M. Charge transfer complexes of adenosine-5′-monophosphate and cytidine-5′-monophosphate with water-soluble cobalt (II) Schiff base complexes in aqueous solution. Spectrochim Acta 2006; 63A: 139–148.Google Scholar

  • Boghaei DM, Gharagozlou M. Spectral characterization of novel ternary Zinc (II) complexes containing 1,10-phenanthroline and Schiff bases derived from amino acids and salicylaldehyde-5-sulfonates. Spectrochim Acta 2007; 67A: 944–949.Google Scholar

  • Cao C. On electrochemical techniques for interface inhibitor research. Corros Sci 1996; 38: 2073–2082.CrossrefGoogle Scholar

  • Cheng XL, Ma HY, Chen S, Yu R, Chen X, Yao ZM. Corrosion of stainless steels in acid solutions with organic sulfur-containing compounds. Corros Sci 1999; 41: 321.Google Scholar

  • Crolet J, Thevenot N, Nesic S. Role of conductive corrosion products in the protectiveness of corrosion layers. Corrosion 1998; 54: 194–203.CrossrefGoogle Scholar

  • Desai MN, Desai MB, Shah CB, Desai SM. Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions. Corros Sci 1986; 26: 827–837.CrossrefGoogle Scholar

  • Ding YS, Zha M, Zhang J, Wang SS. Synthesis, characterization and properties of geminal imidazolium ionic liquids. Colloids Surf 2007; A 298: 201–205.Google Scholar

  • Ditchfield R, Hehre WJ, Pople JA. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 1971; 54: 724–728.CrossrefGoogle Scholar

  • El-Sayed A, Shaker AM, Abd El-Lateef HM. Corrosion inhibition of tin, indium and tin–indium alloys by adenine or adenosine in hydrochloric acid solution. Corros Sci 2010; 52: 72–81.Google Scholar

  • El-Sayed A, Mohran HS, Abd El-Lateef HM. The inhibition effect of 2, 4, 6-tris (2-pyridyl)-1, 3, 5-triazine on corrosion of tin, indium and tin-indium alloys in hydrochloric acid solution. Corros Sci 2010; 52: 1976–1984.Google Scholar

  • Emregül KC, Atakol O. Corrosion inhibition of iron in 1 m HCl solution with Schiff base compounds and derivatives. Mater Chem Phys 2004; 83: 373–379.CrossrefGoogle Scholar

  • Farelas F, Ramirez A. Carbon dioxide corrosion inhibition of carbon steels through bis-imidazoline and imidazoline compounds studied by EIS. Int J Electrochem Sci 2010; 5: 797–814.Google Scholar

  • Frisch MJ, et al. Gaussian 03, Revision C 01. Wallingford, CT: Gaussian, Inc., 2004.Google Scholar

  • Gece G. The use of quantum chemical methods in corrosion inhibitor studies. Corros Sci 2008; 50: 2981–2992.CrossrefGoogle Scholar

  • Hamitouche H, Khelifa A, Kouache A, Moulay S. Petroleum quaternary ammonium surfactants mixture synthesized from light naphtha as corrosion inhibitors for carbon steel in 1 m HCl. Corros Rev 2013; 31(2): 61–72.Google Scholar

  • Hosseini MG, Ehteshamzadeh M, Shahrabi T. Protection of mild steel corrosion with Schiff bases in 05 m H2SO4 solution. Electrochim Acta 2007; 52: 3680–3685.CrossrefGoogle Scholar

  • Ju H, Kai ZP, Li Y. Aminic nitrogen-bearing polydentate Schiff base compounds as corrosion inhibitors for iron in acidic media: a quantum chemical calculation. Corros Sci 2008; 50: 865–871.CrossrefGoogle Scholar

  • Kirker GW. An efficient synthesis of 5-sulfosalicylaldehyde sodium salt. Org Prep Proced Int 1980; 12: 246–249.Google Scholar

  • Küstü C, Emregül KC, Atakol O. Schiff bases of increasing complexity as mild steel corrosion inhibitors in 2 m HCl. Corros Sci 2007; 49: 2800–2814.CrossrefGoogle Scholar

  • Lashgari M, Arshadi MR, Miandari S. The enhancing power of iodide on corrosion prevention of mild steel in the presence of a synthetic-soluble Schiff base: electrochemical and surface analyses. Electrochim Acta 2010; 55: 6058–6063.CrossrefGoogle Scholar

  • Li Y, Zhang Y, Jungwirth S, Seely N, Fang Y, Shi X. Corrosion inhibitors for metals in maintenance equipment: introduction and recent developments. Corros Rev 2014; 32(5–6): 163–181.Google Scholar

  • López DA, Simison SN, de Sánchez SR. Inhibitors performance in CO2 corrosion: EIS studies on the interaction between their molecular structure and steel microstructure. Corros Sci 2005; 47: 735–755.Google Scholar

  • Lukovits I, Kálmán E, Bakó I, Felhosi I. J Telegdi Ann Univ Ferrara, NS, Sez V, Suppl 10, in: Proceedings of the Eighth European Symposium on Corrosion Inhibitors 1995; 10: 543.Google Scholar

  • Lukovits I, Palfi K, Bako I, Kalman E. LKP Model of the inhibition mechanism of thiourea compounds. Corrosion 1997; 53: 915–919.CrossrefGoogle Scholar

  • Madhankumar A, Rajendran N. A promising copolymer of p-phenylendiamine and o-aminophenol: chemical and electrochemical synthesis, characterization and its corrosion protection aspect on mild steel. Synth Met 2012; 162: 176–185.CrossrefGoogle Scholar

  • Meresht ES, Farahani TS, Neshati J. Failure analysis of stress corrosion cracking occurred in a gas transmission steel pipeline. Eng Fail Anal 2011; 18: 963–970.CrossrefGoogle Scholar

  • Meresht ES, Farahani TS, Neshati J. 2-Butyne-1,4-diol as a novel corrosion inhibitor for API X65 steel pipeline in carbonate/bicarbonate solution. Corros Sci 2012; 54: 36–44.CrossrefGoogle Scholar

  • Mert BD, Mert ME, Kardaş G, Yazıcı B. Experimental and theoretical investigation of 3-amino-1,2,4-triazole-5-thiol as a corrosion inhibitor for carbon steel in HCl medium. Corros Sci 2011; 53: 4265–4272.CrossrefGoogle Scholar

  • Nataraj A, Balachandran V, Karthick T. Molecular orbital studies (hardness, chemical potential, electrophilicity, and first electron excitation), vibrational investigation and theoretical NBO analysis of 2-hydroxy-5-bromobenzaldehyde by density functional method. J Mol Struct 2013; 1031: 221–233.Google Scholar

  • Negm NA, Zaki MF, Salem MAI. Synthesis and evaluation of 4-diethyl amino benzaldehyde Schiff base cationic amphiphiles as corrosion inhibitors for carbon steel in different acidic media. J Surf Deterg 2009; 12: 321–329.CrossrefGoogle Scholar

  • Nordsveen M, Nesic S, Nyborg R, Stangelend A. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films – part 1: theory and verification. Corrosion 2003; 59: 443–456.CrossrefGoogle Scholar

  • Obot IB, Obi-Egbedi NO, Umoren SA. Antifungal drugs as corrosion inhibitors for aluminium in 01 m HCl. Corros Sci 2009; 51: 1868–1875.CrossrefGoogle Scholar

  • Obot EEE, Murulana IB. Quinoline and its derivatives as effective corrosion inhibitors for mild steel in acidic medium. Int J Electrochem Sci 2010; 5 1574–1586.Google Scholar

  • Okafor PC, Zheng Y. Synergistic inhibition behaviour of methylbenzyl quaternary imidazoline derivative and iodide ions on mild steel in H2SO4 solutions. Corros Sci 2009; 51: 850–859.CrossrefGoogle Scholar

  • Parr RG, Szentpaly LV, Liu S, Electrophilicity index. J Am Chem Soc 1999; 121: 1922–1924.CrossrefGoogle Scholar

  • Prabhu RA, Venkatesha TV, Shanbhag AV, Kulkarni GM, Kalkhambkar RG. Inhibition effects of some Schiff’s bases on the corrosion of mild steel in hydrochloric acid solution. Corros Sci 2008; 50: 3356–3362.CrossrefGoogle Scholar

  • Prathibha BS, Kotteeswaran P, Bheemaraju V. Inhibition of sulphuric acid corrosion of mild steel by surfactant and its adsorption and kinetic characteristics. J Appl Chem 2013; 5: 1–10.Google Scholar

  • Safak S, Duran B, Yurt A, Türkoglu G. Schiff bases as corrosion inhibitor for aluminium in HCl solution. Corros Sci 2012; 54: 251–259.CrossrefGoogle Scholar

  • Samide A, Bibicu I, Rogalski M, Preda M. A study of the corrosion inhibition of carbon steel in diluted ammonia media using 2-mercapto-benzothiazol (MBT). Acta Chim Slov 2004; 51: 127–136.Google Scholar

  • Satapathy AK, Gunasekaran G, Sahoo SC, Amit K, Rodrigues PV. Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution. Corro Sci 2009; 51: 2848–2856.CrossrefGoogle Scholar

  • Shaker AM, Awad AM, Nassr LAE. Synthesis and characterization of some novel amino acid Schiff base Fe(II) complexes. Synth React Inorg Metorg Chem 2003; 33: 103–117.Google Scholar

  • Shaker AM, Nassr LAE, Adam MSS, Mohamed IMA. Hydrophilicity and acid hydrolysis of water-soluble antibacterial iron (II) Schiff base complexes in binary aqueous solvents. Russ J Gen Chem 2013a; 83(12): 2460–2464.CrossrefGoogle Scholar

  • Shaker AM, Nassr LAE, Adam MSS, Mohamed IMA. Synthesis, characterization and spectrophotometric studies of seven novel antibacterial hydrophilic iron (II) Schiff base amino acid complexes. J Korean Chem Soc 2013b; 57(5): 560–567.CrossrefGoogle Scholar

  • Soltani N, Behpour M, Ghoreishi SM, Naeimi H. Corrosion inhibition of mild steel in hydrochloric acid solution by some double Schiff bases. Corros Sci 2010; 52: 1351–1361.CrossrefGoogle Scholar

  • Staicopolus N. The role of cementite in the acidic corrosion of steel. J Electrochem Soc 1963; 110: 1121–1124.CrossrefGoogle Scholar

  • Thomas JGN. Some new fundamental aspects in corrosion inhibitors. Ann Univ Ferrara NS, Sez V Suppl N8, University of Ferrara, Ferrara, Italy, 1981; 453.Google Scholar

  • Torrent-Sucarrat M, De Proft F, Ayers PW, Geerlings P. On the applicability of local softness and hardness. Phys Chem Chem Phys 2010; 12: 1072–1080.CrossrefGoogle Scholar

  • Verma C, Quraishi MA, Ebenso EE. Mannich bases derived from melamine, formaldehyde alkanoleamines as novel corrosion inhibitors for mild steel in hydrochloric acid medium. Int J Electrochem. Sci 2013; 8: 10851–10863.Google Scholar

  • Videm K, Kvarekvaal J, Perez T, Fitzsimons G. Corrosion of carbon steel in carbon dioxide-saturated solutions containing small amounts of hydrogen sulfide. Corrosion 1995; 51:260–269.CrossrefGoogle Scholar

  • Wang L. Inhibiting effect of 2-mercaptopyrimidine on the corrosion of a low carbon steel in phosphoric acid. Corros Sci 2001; 43: 1637–1644.Google Scholar

  • Yin ZF, Feng YR, Zhao WZ, Bai ZQ, Lin GF. Effect of temperature on CO2 corrosion of carbon steel. Surf Interface Anal 2009; 41: 517–523.CrossrefGoogle Scholar

  • Zaki ZM. Spectral, thermal and electrical properties of some new azo complexes, Spectrochemi Acta 2000; 56 A: 1917–1923.Google Scholar

Artikelinformationen

Hany M. Abd El-Lateef

Hany M. Abd El-Lateef obtained his Master’s degree in Physical Chemistry from the University of Sohag, Sohag, Egypt. In 2010, he joined the Department of Chemical Resistance of Materials and Corrosion Protection, Institute of Petrochemical Processes (IPP), Azerbaijan National Academy of Sciences, as a PhD student. In 2013, he obtained his PhD from IPP in Electrochemistry and Corrosion Science under the supervision of Professor V. M. Abbasov. His thesis dealt with the synthesis and study of corrosion inhibitors for protection from CO2 corrosion. Since May 2013, Dr Abd El-Lateef has been a chemistry teacher at the University of Sohag. His research has focused on unraveling corrosion mechanisms and designing corrosion-resistant alloys and coatings as well as the synthesis of new inhibitors for steel pipelines using eco-friendly corrosion inhibitors in acidizing processes in the petroleum industry. Dr Abd El-Lateef has authored 35 papers in international journals and two books.

Mohamed Ismael

Mohamed Ismael Mohamed Yossef received his Bachelor’s degree in Chemistry from South Valley University (Sohag, Egypt) in 2000 and obtained his PhD degree in Applied Chemistry from Tohoku University (Japan). He is currently a lecturer of chemistry at the Department of Chemistry, Faculty of Science, Sohag University, Egypt. His current research interests are quantum chemistry and materials design.

Ibrahim M.A. Mohamed

Ibrahim Mohamed obtained his MSc in Inorganic Chemistry from Sohag University, Egypt, in 2013. He is currently working as an assistant lecturer at Sohag University. His research interests include environmental and energy applications of Schiff bases.


Corresponding author: Hany M. Abd El-Lateef, Faculty of Science, Chemistry Department, Sohag University, Sohag 82524, Egypt, e-mail:


Erhalten: 26.11.2014

Angenommen: 03.12.2014

Online erschienen: 13.02.2015

Erschienen im Druck: 01.03.2015


Quellenangabe: Corrosion Reviews, Band 33, Heft 1-2, Seiten 77–97, ISSN (Online) 2191-0316, ISSN (Print) 0334-6005, DOI: https://doi.org/10.1515/corrrev-2014-0059.

Zitat exportieren

©2015 by De Gruyter.Get Permission

Zitierende Artikel

Hier finden Sie eine Übersicht über alle Crossref-gelisteten Publikationen, in denen dieser Artikel zitiert wird. Um automatisch über neue Zitierungen dieses Artikels informiert zu werden, aktivieren Sie einfach oben auf dieser Seite den „E-Mail-Alert: Neu zitiert“.

[2]
Tianbao Zhang, Wenfeng Jiang, Huilong Wang, and Shufen Zhang
Materials Chemistry and Physics, 2019, Seite 121866
[3]
Abdelwahed R. Sayed, Mahmoud M. Saleh, Mohammed A. Al-Omair, and Hany M. Abd Al-Lateef
Journal of Molecular Structure, 2019, Jahrgang 1184, Seite 452
[5]
Mohamed Shaker S. Adam and Ahmad Desoky M. Mohamad
Polyhedron, 2018, Jahrgang 151, Seite 118
[6]
Hany M. Abd El-Lateef, Mohamed Shaker S. Adam, and Mai M. Khalaf
Journal of the Taiwan Institute of Chemical Engineers, 2018, Jahrgang 88, Seite 286
[9]
[12]
[13]
Hany M. Abd El-Lateef and Mahmoud Abd El Aleem Ali Ali Elremaily
Transactions of the Indian Institute of Metals, 2016, Jahrgang 69, Nummer 9, Seite 1783
[15]
Hany M. Abd El-Lateef, Ahmed M. Abu-Dief, and Bahaa El-Dien M. El-Gendy
Journal of Electroanalytical Chemistry, 2015, Jahrgang 758, Seite 135

Kommentare (0)