Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Corrosion Reviews

Editor-in-Chief: Latanision, Ronald M. / Rebak, Raúl B.

6 Issues per year

IMPACT FACTOR 2016: 1.085
5-year IMPACT FACTOR: 1.655

CiteScore 2016: 1.17

SCImago Journal Rank (SJR) 2016: 0.427
Source Normalized Impact per Paper (SNIP) 2016: 0.675

See all formats and pricing
More options …
Volume 33, Issue 6


Discrete dislocation modeling of stress corrosion cracking in an iron

Ilaksh Adlakha
  • School for Engineering of Matter, Transport, and Energy, Arizona State University, 501 Tyler Mall, Tempe, AZ 85287, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kuntimaddi Sadananda / Kiran N. Solanki
  • Corresponding author
  • School for Engineering of Matter, Transport, and Energy, Arizona State University, 501 Tyler Mall, Tempe, AZ 85287, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-16 | DOI: https://doi.org/10.1515/corrrev-2015-0068


Material strengthening and embrittlement are controlled by interactions between dislocations and hydrogen that alter the observed deformation mechanisms. In this work, we used an energetics approach to differentiate two fundamental stress corrosion mechanisms in iron, namely, hydrogen-enhanced localized plasticity and hydrogen-enhanced decohesion. Considering the small-scale yielding condition, we use a discrete dislocation framework with line dislocations to simulate the crack-tip plastic behavior. The crack growth was modeled using the change in surface energies (cohesive zone laws) due to hydrogen segregation. The changes in the surface energies as a function of hydrogen concentration are computed using atomistic simulations. Results indicate that, when hydrogen concentrations are low, crack growth occurs by alternating mechanisms of cleavage and slip. However, as the hydrogen concentrations increased above some critical value, the crack grows predominately by the cleavage-based decohesion process.

Keywords: cleavage; discrete dislocation; dislocation; hydrogen embrittlement


  • Abraham DP, Altstetter CJ. The effect of hydrogen on the yield and flow stress of an austenitic stainless steel. Metall Mater Trans A 1995; 26: 2849–2858.CrossrefGoogle Scholar

  • Adlakha I, Bhatia M, Tschopp M, Solanki K. Atomic scale investigation of grain boundary structure role on intergranular deformation in aluminium. Philos Mag 2014a; 94: 3445–3466.CrossrefGoogle Scholar

  • Adlakha I, Tschopp M, Solanki K. The role of grain boundary structure and crystal orientation on crack growth asymmetry in aluminum. Mater Sci Eng A 2014b; 618: 345–354.CrossrefGoogle Scholar

  • Asano S, Otsuka R. The lattice hardening due to dissolved hydrogen in iron and steel. Scripta Metall 1976; 10: 1015–1020.CrossrefGoogle Scholar

  • Asano S, Otsuka R. Further discussion on the lattice hardening due to dissolved hydrogen in iron and steel. Scripta Metall 1978; 12: 287–288.CrossrefGoogle Scholar

  • Beachem CD. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”). Metall Trans 1972; 3: 441–455.CrossrefGoogle Scholar

  • Bhatia MA, Solanki KN. Energetics of vacancy segregation to symmetric tilt grain boundaries in hexagonal closed pack materials. J Appl Phys 2013; 114: 244309.CrossrefGoogle Scholar

  • Bhatia MA, Groh S, Solanki KN. Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in α iron. J Appl Phys 2014; 116: 064302.CrossrefGoogle Scholar

  • Bonakdar A, Wang F, Williams JJ, Chawla N. Environmental effects on fatigue crack growth in 7075 aluminum alloy. Metall Mater Trans A 2012; 43: 2799–2809.CrossrefGoogle Scholar

  • Caskey Jr GR. Effect of hydrogen on work hardening of type 304L austenitic stainless steel. Scripta Metall 1981; 15: 1183–1186.Google Scholar

  • Davenport JW, Estrup PH. Hydrogen on transition metals. In: The chemical physics of solid surfaces and heterogeneous catalysis. Vol. 3A. Elsevier: Amsterdam, 1990: 1–38.Google Scholar

  • Daw MS, Baskes MI. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 1983; 50: 1285–1288.CrossrefGoogle Scholar

  • Eastman J, Heubaum F, Matsumoto T, Birnbaum HK. The effect of hydrogen on the solid solution strengthening and softening of nickel. Acta Metall 1982; 30: 1579–1586.CrossrefGoogle Scholar

  • Ferreira PJ, Robertson IM, Birnbaum HK. Hydrogen effects on the interaction between dislocations. Acta Mater 1998; 46: 1749–1757.CrossrefGoogle Scholar

  • Hayward E, Fu C-C. Interplay between hydrogen and vacancies in α-Fe. Phys Rev B 2013; 87: 174103.CrossrefGoogle Scholar

  • Hirth JP. Effects of hydrogen on the properties of iron and steel. Metall Trans A 1980; 11: 861–890.CrossrefGoogle Scholar

  • Jagannadham K, Marcinkowski MJ. Unified theory of fracture. Trans Tech Publications, Ltd., 1983.Google Scholar

  • Jiang D, Carter EA. Adsorption and diffusion energetics of hydrogen atoms on Fe(110) from first principles. Surf Sci 2003; 547: 85–98.CrossrefGoogle Scholar

  • Jiang DE, Carter EA. Diffusion of interstitial hydrogen into and through Bcc Fe from first principles. Phys Rev B 2004; 70: 064102.CrossrefGoogle Scholar

  • Kimura A, Birnbaum HK. Hydrogen induced grain boundary fracture in high purity nickel and its alloys – enhanced hydrogen diffusion along grain boundaries. Acta Metall 1988; 36: 757–766.CrossrefGoogle Scholar

  • Kimura H, Matsui H. Mechanism of hydrogen-induced softening and hardening in iron. Scripta Metall 1987; 21: 319–324.CrossrefGoogle Scholar

  • Kitagawa H, Takahashi S. Applicability of fracture mechanics to very small cracks or the cracks in the early stage. In: Second International Conference on Mechanical Behavior of Materials. Metals Park, Ohio: ASM, 1976: 627–631.Google Scholar

  • Kwon D-I, Asaro RJ. Hydrogen-assisted ductile fracture in spheroidized 1518 steel. Acta Metall Mater 1990; 38: 1595–1606.CrossrefGoogle Scholar

  • Lee TD, Goldenberg T, Hirth JP. Effect of hydrogen on fracture of U-notched bend specimens of spheroidized AISI 1095 steel. Metall Mater Trans A 1979; 10: 199–208.Google Scholar

  • Lejcek P. Grain boundary segregation in metals. Vol. 136. Springer, 2010.Google Scholar

  • Liang Y, Sofronis P. Toward a phenomenological description of hydrogen-induced decohesion at particle/matrix interfaces. J Mech Phys Solids 2003; 51: 1509–1531.CrossrefGoogle Scholar

  • Louthan Jr M, Caskey Jr G, Donovan J, Rawl Jr D. Hydrogen embrittlement of metals. Mater Sci Eng 1972; 10: 357–368.CrossrefGoogle Scholar

  • Lufrano J, Sofronis P, Birnbaum HK. Modeling of hydrogen transport and elastically accommodated hydride formation near a crack tip. J Mech Phys Solids 1996; 44: 179–205.CrossrefGoogle Scholar

  • Lynch SP. Mechanisms and kinetics of environmentally assisted cracking: current status, issues, and suggestions for further work. Metall Mater Trans A 2013; 44: 1209–1229.CrossrefGoogle Scholar

  • Matsui H, Kimura H, Moriya S. The effect of hydrogen on the mechanical properties of high purity iron I. Softening and hardening of high purity iron by hydrogen charging during tensile deformation. Mater Sci Eng 1979; 40: 207–216.CrossrefGoogle Scholar

  • Myers SM, Baskes MI, Birnbaum HK, Corbett JW, DeLeo GG, Estreicher SK, Haller EE, Jena P, Johnson NM, Kirchheim R, Pearton SJ, Stavola MJ. Hydrogen interactions with defects in crystalline solids. Rev Mod Phys 1992; 64: 559.CrossrefGoogle Scholar

  • Oriani RA. Hydrogen embrittlement of steels. Annu Rev Mater Sci 1978; 8: 327–357.CrossrefGoogle Scholar

  • Oriani RA, Josephic PH. Hydrogen-enhanced load relaxation in a deformed medium-carbon steel. Acta Metall 1979; 27: 997–1005.CrossrefGoogle Scholar

  • Paris P, Erdogan F. A critical analysis of crack propagation laws. J Fluids Eng 1963; 85: 528–533.Google Scholar

  • Paxton AT, Elsässer C. Electronic structure and total energy of interstitial hydrogen in iron: tight-binding models. Phys Rev B 2010; 82: 235125.CrossrefGoogle Scholar

  • Rajagopalan M, Bhatia MA, Tschopp MA, Srolovitz DJ, Solanki KN. Atomic-scale analysis of liquid-gallium embrittlement of aluminum grain boundaries. Acta Mater 2014a; 73: 312–325.CrossrefGoogle Scholar

  • Rajagopalan M, Tschopp MA, Solanki KN. Grain boundary segregation of interstitial and substitutional impurity atoms in α-iron. J Met 2014b; 66: 129–138.Google Scholar

  • Ramasubramaniam A, Itakura M, Carter EA. Interatomic potentials for hydrogen in α-iron based on density functional theory. Phys Rev B 2009; 79: 174101.CrossrefGoogle Scholar

  • Robertson IM. The effect of hydrogen on dislocation dynamics. Eng Fracture Mech 2001; 68: 671–692.CrossrefGoogle Scholar

  • Sadananda K, Sarkar S. Modified Kitagawa diagram and transition from crack nucleation to crack propagation. Metall Mater Trans A 2013; 44: 1175–1189.CrossrefGoogle Scholar

  • Sadananda K, Vasudevan AK. Review of environmentally assisted cracking. Metall Mater Trans A 2011; 42: 279–295.CrossrefGoogle Scholar

  • Sadananda K, Jagannadham K, Marcinkowski M. Discrete dislocation analysis of a plastic tensile crack. Phys Stat Solidi A 1977; 44: 633–642.CrossrefGoogle Scholar

  • Sieverts A, Krumbhaar W, Jurisch E. The solubility of hydrogen in copper, iron and nickel. Z Phys Chem (Leipzig) 1911; 77: 591.Google Scholar

  • Sofronis P, Birnbaum HK. Mechanics of the hydrogen-dislocation-impurity interactions – I. Increasing shear modulus. J Mech Phys Solids 1995; 43: 49–90.CrossrefGoogle Scholar

  • Sofronis P, Liang Y, Aravas N. Hydrogen induced shear localization of the plastic flow in metals and alloys. Eur J Mech A Solids 2001; 20: 857–872.CrossrefGoogle Scholar

  • Solanki KN, Ward DK, Bammann DJ. A nanoscale study of dislocation nucleation at the crack tip in the nickel-hydrogen system. Metall Mater Trans A 2011; 42: 340–347.CrossrefGoogle Scholar

  • Solanki KN, Tschopp MA, Bhatia MA, Rhodes NR. Atomistic investigation of the role of grain boundary structure on hydrogen segregation and embrittlement in α-Fe. Metall Mater Trans A 2013; 44: 1365–1375.CrossrefGoogle Scholar

  • Switendick AC. The change in electronic properties on hydrogen alloying and hydride formation. In: Alefeld G, Völkl J, editors; Amelinckx S, Chebotayev VP, Gomer R, Ibach H, Letokhov VS, Lotsch HKV, Queisser HJ, Schäfer FP, Seeger A, Shimoda K, et al., series editors. Hydrogen in metals I. Vol. 28. Berlin/Heidelberg: Springer 1978: 101–129.Google Scholar

  • Taketomi S, Matsumoto R, Miyazaki N. Atomistic study of hydrogen distribution and diffusion around a {112}<111> edge dislocation in α iron. Acta Mater 2008; 56: 3761–3769.CrossrefGoogle Scholar

  • Taketomi S, Matsumoto R, Miyazaki N. Atomistic study of the effect of hydrogen on dislocation emission from a mode II crack tip in α iron. Int J Mech Sci 2010; 52: 334–338.CrossrefGoogle Scholar

  • Tang X, Thompson AW. Hydrogen effects on slip character and ductility in Ni-Co alloys. Mater Sci Eng A 1994; 186: 113–119.CrossrefGoogle Scholar

  • Tang Y, El-Awady JA. Atomistic simulations of the interactions of hydrogen with dislocations in fcc metals. Phys Rev B 2012; 86: 174102.CrossrefGoogle Scholar

  • Thompson AW. Hydrogen-assisted fracture at notches. Mater Sci Technol 1985; 1: 711–718.CrossrefGoogle Scholar

  • Ulmer DG, Altstetter CJ. Hydrogen-induced strain localization and failure of austenitic stainless steels at high hydrogen concentrations. Acta Metall Mater 1991; 39: 1237–1248.CrossrefGoogle Scholar

  • Vehoff H, Rothe W. Gaseous hydrogen embrittlement in FeSi- and Ni-single crystals. Acta Metall 1983; 31: 1781–1793.CrossrefGoogle Scholar

  • Vehoff H, Klameth H-K. Hydrogen embrittlement and trapping at crack tips in Ni-single crystals. Acta Metall 1985; 33: 955–962.CrossrefGoogle Scholar

  • Wang S, Hashimoto N, Ohnuki S. Hydrogen-induced change in core structures of {110}[111] edge and {110}[111] screw dislocations in iron. Sci Rep 2013; 3.Google Scholar

  • Watson JW, Meshii M, Shen YZ. Effect of cathodic charging on the mechanical properties of aluminum. Metall Trans A 1988; 19: 2299–2304.CrossrefGoogle Scholar

  • Wen M, Li Z. Thermally activated process of homogeneous dislocation nucleation and hydrogen effects: an atomistic study. Comput Mater Sci 2012; 54: 28–31.CrossrefGoogle Scholar

  • Yamaguchi M, Ebihara K-I, Itakura M, Kadoyoshi T, Suzudo T, Kaburaki H. First-principles study on the grain boundary embrittlement of metals by solute segregation: part II. Metal (Fe, Al, Cu)-hydrogen (H) systems. Metall Mater Trans A 2011; 42: 330–339.CrossrefGoogle Scholar

  • You CP, Thompson AW, Bernstein IM. Ductile fracture processes in 7075 aluminum. Metall Mater Trans A 1995; 26: 407–415.CrossrefGoogle Scholar

  • Zhao Y, Lu G. QM/MM study of dislocation-hydrogen/helium interactions in α-Fe. Model Simul Mater Sci Eng 2011; 19: 065004.CrossrefGoogle Scholar

About the article

Corresponding author: Kiran N. Solanki, School for Engineering of Matter, Transport, and Energy, Arizona State University, 501 Tyler Mall, Tempe, AZ 85287, USA, e-mail:

Received: 2014-10-03

Accepted: 2015-08-19

Published Online: 2015-09-16

Published in Print: 2015-11-01

Citation Information: Corrosion Reviews, Volume 33, Issue 6, Pages 467–475, ISSN (Online) 2191-0316, ISSN (Print) 0334-6005, DOI: https://doi.org/10.1515/corrrev-2015-0068.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Kuntimaddi Sadananda, Kiran N. Solanki, and Asuri K. Vasudevan
Corrosion Reviews, 2017, Volume 0, Number 0

Comments (0)

Please log in or register to comment.
Log in