Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Corrosion Reviews

Editor-in-Chief: Latanision, Ronald M. / Rebak, Raúl B.

6 Issues per year


IMPACT FACTOR 2017: 1.660
5-year IMPACT FACTOR: 2.289

CiteScore 2017: 1.62

SCImago Journal Rank (SJR) 2017: 0.458
Source Normalized Impact per Paper (SNIP) 2017: 0.982

Online
ISSN
2191-0316
See all formats and pricing
More options …
Volume 34, Issue 1-2

Issues

Omics-based approaches and their use in the assessment of microbial-influenced corrosion of metals

David J. Beale
  • Corresponding author
  • Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO Box 2583, Brisbane 4001, Queensland, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Avinash V. Karpe
  • Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO Box 2583, Brisbane 4001, Queensland, Australia
  • Faculty of Science, Engineering and Technology, Department of Chemistry and Biotechnology, Swinburne University of Technology, P.O. Box 218, Hawthorn 3122, Victoria, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Snehal Jadhav
  • Faculty of Science, Engineering and Technology, Department of Chemistry and Biotechnology, Swinburne University of Technology, P.O. Box 218, Hawthorn 3122, Victoria, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tim H. Muster
  • Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation (CSIRO), PMB 2, Glen Osmond 5064, South Australia, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Enzo A. Palombo
  • Faculty of Science, Engineering and Technology, Department of Chemistry and Biotechnology, Swinburne University of Technology, P.O. Box 218, Hawthorn 3122, Victoria, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-07 | DOI: https://doi.org/10.1515/corrrev-2015-0046

Abstract

Microbial-influenced corrosion (MIC) has been known to have economic, environmental, and social implications to offshore oil and gas pipelines, concrete structures, and piped water assets. While corrosion itself is a relatively simple process, the localised manner of corrosion makes in situ assessments difficult. Furthermore, corrosion assessments tend to be measured as part of a forensic investigation. Compounding the issue further is the impact of microbiological/biofilm processes, where corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. While traditional microbiological culture-dependent techniques and electrochemical/physical assessments provide some insight into corrosion activity, the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments are scarce. One avenue to explore MIC and MIC inhibition is through the application of omics-based techniques, where insight into the bacterial population in terms of diversification and their metabolism can be further understood. As such, this paper discusses the recent progresses made in a number of fields that have used omics-based applications to improve the fundamental understanding of biofilms and MIC processes.

Keywords: corrosion; metabolomics; metagenomics; microbial corrosion; next generation sequencing

References

  • Ahmed W, Staley C, Sadowsky MJ, Gyawali P, Sidhu JPS, Palmer A, Beale D, Toze S. Toolbox approaches using molecular markers and 16S rDNA amplicon datasets for the identification of fecal pollution in surface water. Appl Environ Microbiol 2015. doi: 10.1128/AEM.02032-15.CrossrefGoogle Scholar

  • Anderson NW, Buchan BW, Riebe KM, Parsons, LN, Gnacinski S, Ledeboer NA. Effects of solid-medium type on routine identification of bacterial isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2012; 50: 1008–1013.CrossrefGoogle Scholar

  • Anke M. Vanadium – An element both essential and toxic to plants, animals and humans? Anal Real Acad Nac Farm 2004; 70: 961–999.Google Scholar

  • Balamurugan P, Hiren Joshi M, Rao TS. Microbial fouling community analysis of the cooling water system of a nuclear test reactor with emphasis on sulphate reducing bacteria. Biofouling 2011; 27: 967–978.CrossrefGoogle Scholar

  • Barreau M, Pagnier I, La Scola B. Improving the identification of anaerobes in the clinical microbiology laboratory through MALDI-TOF mass spectrometry. Anaerobe 2013; 22: 123–125.CrossrefGoogle Scholar

  • Beale DJ, Dunn MS, Marney D. Application of GC-MS metabolic profiling to ‘blue-green water’ from microbial influenced corrosion in copper pipes. Corros Sci 2010; 52: 3140–3145.CrossrefGoogle Scholar

  • Beale DJ, Dunn MS, Morrison PD, Porter NA, Marlow DR. Characterisation of bulk water samples from copper pipes undergoing microbially influenced corrosion by diagnostic metabolomic profiling. Corros Sci 2012; 55: 272–279.CrossrefGoogle Scholar

  • Beale DJ, Morrison PD, Palombo, EA. Detection of Listeria in milk using non-targeted metabolic profiling of Listeria monocytogenes: a proof-of-concept application. Food Control 2014; 42: 343–346.CrossrefGoogle Scholar

  • Beale DJ, Morrison PD, Key C, Palombo EA. Metabolic profiling of biofilm bacteria known to cause microbial influenced corrosion. Water Sci Technol 2014; 69: 1–8.CrossrefGoogle Scholar

  • Beech IB, Gaylarde CC. Recent advances in the study of biocorrosion – an overview. Rev Microbiol 1999; 30: 177–190.CrossrefGoogle Scholar

  • Beech IB, Sztyler M, Gaylarde CC, Smith WL, Sunner J. 2 – Biofilms and biocorrosion. In: Liengen T, Féron D, Basséguy R, Beech IB, editors. Understanding Biocorrosion. Oxford, UK: Woodhead Publishing, 2014: 33–56.Google Scholar

  • Belinky PA, Flikshtein N, Lechenko S, Gepstein S, Dosoretz CG. Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 2003; 69: 6500–6506.CrossrefGoogle Scholar

  • Böhme K, Fernández-No IC, Barros-Velázquez J, Gallardo JM, Cañas B, Calo-Mata P. Rapid species identification of seafood spoilage and pathogenic Gram-positive bacteria by MALDI-TOF mass fingerprinting. Electrophoresis 2011; 32: 2951–2965.CrossrefGoogle Scholar

  • Booth SC, Workentine ML, Wen J, Shaykhutdinov R, Vogel HJ, Ceri H, Turner RJ, Weljie AM. Differences in metabolism between the biofilm and planktonic response to metal stress. J Proteome Res 2011; 10: 3190–3199.CrossrefGoogle Scholar

  • Brown S, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, Berry A. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of l-malic acid. Appl Microbiol Biotechnol 2013; 97: 8903–8912.CrossrefGoogle Scholar

  • Ceci A, Rhee YJ, Kierans M, Hillier S, Pendlowski H, Gray N, Persiani AM, Gadd GM. Transformation of vanadinite [Pb5(VO4)3Cl] by fungi. Environ Microbiol 2015; 17: 2018–2034.CrossrefGoogle Scholar

  • Chakraborty A, DasGupta CK, Bhadury P. 4 – Application of molecular techniques for the assessment of microbial communities in contaminated sites. In: Das S, editor. Microbial biodegradation and bioremediation. Oxford, UK: Elsevier, 2014: 85–113.Google Scholar

  • Characklis WG. Bioengineering report: fouling biofilm development: a process analysis. Biotechnol Bioeng 1981; 23: 1923–1960.CrossrefGoogle Scholar

  • Christensen B, Nielsen J. Metabolic network analysis of penicillium chrysogenumusing13c-labeled glucose. Biotechnol Bioeng 2000; 68: 652–659.CrossrefGoogle Scholar

  • Cortés-Tolalpa L, Gutiérrez-Ríos RM, Martínez LM, de Anda R, Gosset G, Bolívar F, Escalante A. Global transcriptomic analysis of an engineered Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system during shikimic acid production in rich culture medium. Microb Cell Fact 2014; 13: 28.CrossrefGoogle Scholar

  • Croxatto A, Prod’hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 2012; 36: 380–407.CrossrefGoogle Scholar

  • Das SK, Liang J, Schmidt M, Laffir F, Marsili E. Biomineralization mechanism of gold by zygomycete fungi Rhizopous oryzae. ACS Nano 2012; 6: 6165–6173.CrossrefGoogle Scholar

  • De Leo F, Campanella G, Proverbio E, Urzì C. Laboratory tests of fungal biocorrosion of unbonded lubricated post-tensioned tendons. Constr Build Mater 2013; 49: 821–827.CrossrefGoogle Scholar

  • Dexter SC, Duquette DJ, Siebert OW, Videla HA. Use and limitations of electrochemical techniques for investigating microbial corrosion. Corrosion 1991; 47: 308–318.CrossrefGoogle Scholar

  • Douterelo I, Boxall JB, Deines P, Sekar R, Fish KE, Biggs CA. Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Res 2014; 65: 134–156.CrossrefGoogle Scholar

  • Drancourt M. Detection of microorganisms in blood specimens using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a review. Clin Microbiol Infect 2010; 16: 1620–1625.CrossrefGoogle Scholar

  • Dunn WB, Ellis DI. Metabolomics: current analytical platforms and methodologies. TrAC Trends Anal Chem 2005; 24: 285–294.CrossrefGoogle Scholar

  • Edyvean RGJ, Videla HA. Biological corrosion. Interdiscip Sci Rev 1991; 16: 267–282.CrossrefGoogle Scholar

  • Ehrlich HL. Microbes and metals. Appl Microbiol Biotechnol 1997; 48: 687–692.CrossrefGoogle Scholar

  • Emde KME, Smith DW, Facey R. Initial investigation of microbially influenced corrosion –MIC-- in a low temperature water distribution system. Water Res 1992; 26: 169–175.CrossrefGoogle Scholar

  • Ferreira L, Sánchez-Juanes F, González-Ávila M, Cembrero-Fuciños D, Herrero-Hernández A, González-Buitrago JM, Muñoz-Bellido JL. Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2010; 48: 2110–2115.CrossrefGoogle Scholar

  • Flemming HC. Microbial deterioration of materials-fundamentals-economical and technical overview. Werkst Korros 1994; 45: 5–9.CrossrefGoogle Scholar

  • Fogarty RV, Tobin JM. Fungal melanins and their interactions with metals. Enzyme Microb Technol 1996; 19: 311–317.CrossrefGoogle Scholar

  • Gadd GM. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 2007; 111: 3–49.CrossrefGoogle Scholar

  • Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M, Liang X. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 2014; 28: 36–55.CrossrefGoogle Scholar

  • Gharieb M, Ali M, El-Shoura A. Transformation of copper oxychloride fungicide into copper oxalate by tolerant fungi and the effect of nitrogen source on tolerance. Biodegradation 2004; 15: 49–57.CrossrefGoogle Scholar

  • Gomez-Alvarez V. Biofilm-growing bacteria involved in the corrosion of concrete wastewater pipes: protocols for comparative metagenomic analyses. In: Donelli G, editor. Microbial biofilms. Vol. 1147. New York: Springer, 2014: 323–340.Google Scholar

  • Gomez-Alvarez V, Revetta R, Domingo JW. Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system. BMC Microbiol 2012; 12: 122.CrossrefGoogle Scholar

  • Graeber M, Boehm S, Kuever J. 3 – Molecular methods for studying biocorrosion. In: Liengen T, Féron D, Basséguy R, Beech IB, editors. Understanding biocorrosion. Oxford, UK: Woodhead Publishing, 2014: 57–75.Google Scholar

  • Griffin PM, Price GR, Schooneveldt JM, Schlebusch S, Tilse MH, Urbanski T, Hamilton B, Venter D. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify vancomycin-resistant enterococci and investigate the epidemiology of an outbreak. J Clin Microbiol 2012; 50: 2918–2931.CrossrefGoogle Scholar

  • Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 2004; 68: 669–685.CrossrefGoogle Scholar

  • Hasan N, Gopal J, Wu HF. Rapid, sensitive and direct analysis of exopolysaccharides from biofilm on aluminum surfaces exposed to sea water using MALDI-TOF MS. J Mass Spectrom 2011; 46: 1160–1167.CrossrefGoogle Scholar

  • Herrera LK, Videla HA. Role of iron-reducing bacteria in corrosion and protection of carbon steel. Int Biodeterior Biodegrad 2009; 63: 891–895.CrossrefGoogle Scholar

  • Jack TR, Rogoz E, Bramhill B, Roberge PR. The characterization of sulphate-reducing bacteria in heavy oil and waterflood operations. In: Kearns JR, Little BJ, editors. Microbiologically influenced corrosion testing. Vol. 1232. W Conshohocken, PA: American Society Testing and Materials, 1994: 108–117.Google Scholar

  • Jadhav U, Hocheng H. Use of Aspergillus niger 34770 culture supernatant for tin metal removal. Corros Sci 2014; 82: 248–254.CrossrefGoogle Scholar

  • Jadhav S, Sevior D, Bhave M, Palombo EA. Detection of Listeria monocytogenes from selective enrichment broth using MALDI-TOF mass spectrometry. J Proteomics 2014; 97: 100–106.CrossrefGoogle Scholar

  • Jiang F, Kongsaeree P, Charron R, Lajoie C, Xu H, Scot G, Kelly C. Production and separation of manganese peroxidase from heme amended yeast cultures. Biotechnol Bioeng 2008; 99: 540–549.CrossrefGoogle Scholar

  • Jones OA, Dias DA, Callahan DL, Kouremenos KA, Beale DJ, Roessner U. The use of metabolomics in the study of metals in biological systems. Metallomics 2015; 7: 29–38.CrossrefGoogle Scholar

  • Joseph E, Simon A, Mazzeo R, Job D, Wörle M. Spectroscopic characterization of an innovative biological treatment for corroded metal artefacts. J Raman Spectrosc 2012; 43: 1612–1616.CrossrefGoogle Scholar

  • Joshi PK, Swarup A, Maheshwari S, Kumar R, Singh N. Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Ind J Microbiol 2011; 51: 482–487.CrossrefGoogle Scholar

  • Justesen US, Holm A, Knudsen E, Andersen LB, Jensen TG, Kemp M, Skov MN, Gahrn-Hansen B, Møller JK. Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems. J Clin Microbiol 2012; 50: 542.CrossrefGoogle Scholar

  • Karpe AV, Beale DJ, Harding IH, Palombo EA. Optimization of degradation of winery-derived biomass waste by Ascomycetes. J Chem Tech Biotechnol 2015; 90: 1793–1801.CrossrefGoogle Scholar

  • Keevil CW. The physico-chemistry of biofilm-mediated pitting corrosion of copper pipe supplying potable water. Water Sci Technol 2004; 49: 91–98.Google Scholar

  • Kip N, van Veen JA. The dual role of microbes in corrosion. ISME J 2015; 9: 542–551.CrossrefGoogle Scholar

  • Knox J, Jadhav S, Sevior D, Agyekum A, Whipp M, Waring L, Iredell J, Palombo E. (2014). Phenotypic detection of carbapenemase-producing Enterobacteriaceae by use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and the Carba NP test. J Clin Microbiol 2014; 52: 4075–4077.CrossrefGoogle Scholar

  • Kopcakova A, Stramova Z, Kvasnova S, Godany A, Perhacova Z, Pristas P. Need for database extension for reliable identification of bacteria from extreme environments using MALDI TOF mass spectrometry. Chem Pap 2014; 68: 1435–1442.CrossrefGoogle Scholar

  • Kouremenos KA, Beale DJ, Antti H, Palombo EA. Liquid chromatography time of flight mass spectrometry based environmental metabolomics for the analysis of Pseudomonas putida bacteria in potable water. J Chromatogr 2014; 966: 179–186.Google Scholar

  • Krader P, Emerson D. Identification of archaea and some extremophilic bacteria using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Extremophiles 2004; 8: 259–268.CrossrefGoogle Scholar

  • Larsson C, Snoep JL, Norbeck J, Albers E. Flux balance analysis for ethylene formation in genetically engineered Saccharomyces cerevisiae. IET Syst Biol 2011; 5: 245–251.CrossrefGoogle Scholar

  • Lee JS, Little BJ, Ray RI, Stropki JT. Fate of Cr+6 from a coating in an electrolyte with microorganisms. J Electrochem Soc 2012; 159: C530–C538.CrossrefGoogle Scholar

  • Lenhart TR, Duncan KE, Beech IB, Sunner JA, Smith W, Bonifay V, Biri B, Suflita JM. Identification and characterization of microbial biofilm communities associated with corroded oil pipeline surfaces. Biofouling 2014; 30: 823–835.CrossrefGoogle Scholar

  • Li K, Whitfield M, Van Vliet Krystyn J. Beating the bugs: roles of microbial biofilms in corrosion. Corros Rev 2013; 31: 73–84.Google Scholar

  • Little BJ, Ray RI, Pope RK. Relationship between corrosion and the biological sulfur cycle: a review. Corrosion 2000; 56: 433–443.CrossrefGoogle Scholar

  • Little B, Staehle R, Davis R. Fungal influenced corrosion of post-tensioned cables. Int Biodeterior Biodegrad 2001; 47: 71–77.CrossrefGoogle Scholar

  • Liu H, Xu L, Zeng J. Role of corrosion products in biofilms in microbiologically induced corrosion of carbon steel. Br Corros J 2000; 35: 131–135.Google Scholar

  • Lugauskas A, Prosycevas I, Ramanauskas R, Asta Griguceviciene A, Selskiene A, Pakštas V. The influence of micromycetes on the corrosion behaviour of metals (Steel, Al) under conditions of the environment polluted with organic substances. Mater Sci (Medziagotyra) 2009; 15: 224–235.Google Scholar

  • Mohan AM, Bibby KJ, Lipus D, Hammack RW, Gregory KB. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing. PLoS One 2014; 9: e107682.CrossrefGoogle Scholar

  • Moskalyk RR, Alfantazi AM. Processing of vanadium: a review. Miner Eng 2003; 16: 793–805.CrossrefGoogle Scholar

  • Murray PR. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: usefulness for taxonomy and epidemiology. Clin Microbiol Infect 2010; 16: 1626–1630.CrossrefGoogle Scholar

  • Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opin Microbiol 1999; 2: 317–322.CrossrefGoogle Scholar

  • Naranjo L, Pernía B, Inojosa Y, Rojas D, D’Anna LS, González M, De Sisto Á. First evidence of fungal strains isolated and identified from naphtha storage tanks and transporting pipelines in Venezuelan oil facilities. Adv Microbiol 2015; 5: 143.CrossrefGoogle Scholar

  • Neria-González I, Wang ET, Ramírez F, Romero JM, Hernández-Rodríguez C. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe 2006; 12: 122–133.CrossrefGoogle Scholar

  • Niklas J, Schneider K, Heinzle E. Metabolic flux analysis in eukaryotes. Curr Opin Biotechnol 2010; 21: 63–69.CrossrefGoogle Scholar

  • Oliveira VM, Lopes-Oliveira PF, Passarini MRZ, Menezes CBA, Oliveira WRC, Rocha AJ, Sette LD. Molecular analysis of microbial diversity in corrosion samples from energy transmission towers. Biofouling 2011; 27: 435–447.CrossrefGoogle Scholar

  • Pascault N, Loux V, Derozier S, Martin V, Debroas D, Maloufi S, Humbert J-F, Leloup J. Technical challenges in metatranscriptomic studies applied to the bacterial communities of freshwater ecosystems. Genetica 2015; 143: 157–167.CrossrefGoogle Scholar

  • Pavissich JP, Vargas IT, González B, Pastén PA, Pizarro GE. Culture dependent and independent analyses of bacterial communities involved in copper plumbing corrosion. J Appl Microbiol 2010; 109: 771–782.CrossrefGoogle Scholar

  • Potekhina JS, Sherisheva NG, Povetkina LP, Pospelov AP, Rakitina TA, Warnecke F, Gottschalk G. Role of microorganisms in corrosion inhibition of metals in aquatic habitats. Appl Microbiol Biotechnol 1999; 52: 639–646.CrossrefGoogle Scholar

  • Reich M, Bosshard PP, Stark M, Beyser K, Borgmann S. Species identification of bacteria and fungi from solid and liquid culture media by MALDI-TOF mass spectrometry. J Bacteriol Parasitol 2013; S5: 1–8.Google Scholar

  • Rhee YJ, Hillier S, Pendlowski H, Gadd GM. Fungal transformation of metallic lead to pyromorphite in liquid medium. Chemosphere 2014; 113: 17–21.CrossrefGoogle Scholar

  • Santo Domingo JW, Revetta RP, Iker B, Gomez-Alvarez V, Garcia J, Sullivan J, Weast J. Molecular survey of concrete sewer biofilm microbial communities. Biofouling 2011; 27: 993–1001.CrossrefGoogle Scholar

  • Sayer JA, Gadd GM. Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol Res 1997; 101: 653–661.CrossrefGoogle Scholar

  • Seng P, Abat C, Rolain JM, Colson P, Lagier JC, Gouriet F, Fournier PE, Drancourt M, Scola BL, Raoult D. Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2013; 51: 2182–2194.CrossrefGoogle Scholar

  • Sette L, Passarini M, Rodrigues A, Leal R, Simioni K, Nobre F, de Brito B, da Rocha A, Pagnocca F. Fungal diversity associated with Brazilian energy transmission towers. Fungal Diversity 2010; 44: 53–63.CrossrefGoogle Scholar

  • Shoesmith DW, Taylor P, Bailey MG, Owen DG. The formation of ferrous monosulphide polymorphos during the corrosion of iron by aqueous hydrogen-sulfide at 21-degrees C. J Electrochem Soc 1980; 127: 1007–1015.CrossrefGoogle Scholar

  • Si T, Luo Y, Xiao H, Zhao H. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. Metab Eng 2014; 22: 60–68.Google Scholar

  • Sierra-Alvarez R. Fungal bioleaching of metals in preservative-treated wood. Proc Biochem 2007; 42: 798–804.CrossrefGoogle Scholar

  • Smirnov VF, Belov DV, Sokolova TN, Kuzina OV, Kartashov VR. Microbiological corrosion of aluminum alloys. Appl Biochem Microbiol 2008; 44: 192–196.CrossrefGoogle Scholar

  • Sparbier K, Weller U, Boogen C, Kostrzewa M. Rapid detection of Salmonella sp. by means of a combination of selective enrichment broth and MALDI-TOF MS. Eur J Clin Microbiol Infect Dis 2012; 31: 767–773.CrossrefGoogle Scholar

  • Stratmann M. The atmospheric corrosion of iron – a discussion of the physicochemical fundamentals of this omnipresent corrosion process – invited review. Ber Bunsen Ges 1990; 94: 626–639.Google Scholar

  • Tani A, Sahin N, Matsuyama Y, Enomoto T, Nishimura N, Yokota A, Kimbara K. High-throughput identification and screening of novel Methylobacterium species using whole-cell MALDI-TOF/MS analysis. PLoS One 2012; 7: e40784.CrossrefGoogle Scholar

  • Terry LA, Edyvean RGJ. Mocroalgae and corrosion. Botanica Marina 1981; 24: 177–183.CrossrefGoogle Scholar

  • Terry LA, Edyvean RGJ. Recent investigations into the effects of algae on corrosion. In: Evans LV, Hoagland KD, editors. Studies in environmental science. Vol. 28. Chapter 15. Amsterdam: Elsevier, 1986: 211–229.Google Scholar

  • Usher KM, Kaksonen AH, MacLeod ID. Marine rust tubercles harbour iron corroding archaea and sulphate reducing bacteria. Corros Sci 2014; 83: 189–197.CrossrefGoogle Scholar

  • Van Veen SQ, Claas ECJ, Kuijper EJ. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 2010; 48: 900–907.CrossrefGoogle Scholar

  • Vávrová A, Matoulková D, Žová TB, Šedo O. MALDI-TOF MS analysis of anaerobic bacteria isolated from biofilm-covered surfaces in brewery bottling halls. J Am Soc Brew Chem 2014; 72: 95–101.Google Scholar

  • Videla HA. Biocorrosion and biofouling of metals and alloys of industrial usage. Present state of the art at the beginning of the new millennium. Rev Metal 2003; 5: 256–264.CrossrefGoogle Scholar

  • Videla HA, Herrera LK. Understanding microbial inhibition of corrosion. A comprehensive overview. Int Biodeterior Biodegrad 2009; 63: 896–900.CrossrefGoogle Scholar

  • Vincke E, Boon N, Verstraete W. Analysis of the microbial communities on corroded concrete sewer pipes – a case study. Appl Microbiol Biotechnol 2001; 57: 776–785.CrossrefGoogle Scholar

  • Vithanage NR, Yeager TR, Jadhav SR, Palombo EA, Datta N. Comparison of identification systems for psychrotrophic bacteria isolated from raw bovine milk. Int J Food Microbiol 2014; 189: 26–38.CrossrefGoogle Scholar

  • Welker M, Moore ERB. Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol 2011; 34: 2–11.CrossrefGoogle Scholar

  • Wieser A, Schneider L, Jung J, Schubert S. MALDI-TOF MS in microbiological diagnostics – identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol 2012; 93: 965–974.CrossrefGoogle Scholar

  • Wikieł AJ, Datsenko I, Vera M, Sand W. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment. Bioelectrochemistry 2014; 97: 52–60.CrossrefGoogle Scholar

  • Ziegler D, Pothier J, Ardley J, Fossou R, Pflüger V, de Meyer S, Vogel G, Tonolla M, Howieson J, Reeve W, Perret X. Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS. Appl Microbiol Biotechnol 2015; 99: 1–16.CrossrefGoogle Scholar

  • Zuo R. Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol 2007; 76: 1245–1253.CrossrefGoogle Scholar

About the article

David J. Beale

David J. Beale is a research scientist in the Land and Water Flagship at the Commonwealth Scientific and Industrial Research Organisation (CSIRO). He has more than 10 years of experience in the delivery of R&D projects, which include a portfolio of projects relating to sustainability, water management, and quality within the water and wastewater sector. He is also a technical expert and project leader on developing environmental metabolomic techniques for the assessment of pathogens and biofilms within water systems. He holds a bachelor’s degree with first class honours in environmental science and doctorate in analytical chemistry from RMIT University.

Avinash V. Karpe

Avinash V. Karpe has a PhD from the Faculty of Science, Engineering, and Technology, at Swinburne University of Technology and is currently a visiting scientist with CSIRO Land and Water. His primary research involves enhancing fungal bioprocessing for biofuel and medicinal metabolite production. Additionally, he is also involved in numerous metabolomic studies of fungal and bacterial communities in riverine, wastewater, and food processing systems.

Snehal Jadhav

Snehal Jadhav is a postdoctoral research fellow in Swinburne University of Technology, Melbourne, working in the area of microbial proteomics and metabolomics. Currently, her research is centred on the development of strategies based on MALDI-TOF MS, GC-MS, and LC-MS to identify and characterise bacteria obtained from food, clinical, and environmental sources. Previously, her research has also focussed on the effect of natural products against bacterial biofilms formed on abiotic surfaces.

Tim H. Muster

Tim H. Muster is a senior research scientist in the Cities Program in CSIRO Land & Water. He has over 20 years of research experience in the scientific disciplines of colloid, surface, and electrochemistry, with over 65 refereed journal publications. In 2007, Tim was the recipient of CSIRO Young Scientist John Philip Award and has twice won the Marshall Fordham Best Research Paper of the Australasian Corrosion Association (2003 and 2005). More recently, Tim was the recipient of a CSIRO Julius Career Award for nutrient recovery from wastewater and leads research focussed on the effective management of urban and food production waste streams for the productive recovery of water, energy, and nutrients.

Enzo A. Palombo

Enzo A. Palombo is chair at the Department of Chemistry and Biotechnology at Swinburne University of Technology in Australia. He has over 25 years of experience as a microbiologist and combines his academic teaching of microbiology and environmental biology with research interests in environmental microbiology, food microbiology, diagnostic microbiology, gastrointestinal microbiota, and bioactive compound discovery.


Corresponding author: David J. Beale, Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO Box 2583, Brisbane 4001, Queensland, Australia, e-mail:


Received: 2015-05-28

Accepted: 2015-08-20

Published Online: 2015-10-07

Published in Print: 2016-03-01


Citation Information: Corrosion Reviews, Volume 34, Issue 1-2, Pages 1–15, ISSN (Online) 2191-0316, ISSN (Print) 0334-6005, DOI: https://doi.org/10.1515/corrrev-2015-0046.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Seyed Javad Hashemi, Nicholas Bak, Faisal Khan, Kelly Hawboldt, Lianne Lefsrud, and John Wolodko
CORROSION, 2018, Volume 74, Number 4
[2]
Ignacio Vargas, Diego Fischer, Marco Alsina, Juan Pavissich, Pablo Pastén, and Gonzalo Pizarro
Materials, 2017, Volume 10, Number 9, Page 1036

Comments (0)

Please log in or register to comment.
Log in