Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Corrosion Reviews

Editor-in-Chief: Latanision, Ronald M. / Rebak, Raúl B.


IMPACT FACTOR 2018: 2.528

CiteScore 2018: 2.24

SCImago Journal Rank (SJR) 2018: 0.518
Source Normalized Impact per Paper (SNIP) 2018: 1.203

Online
ISSN
2191-0316
See all formats and pricing
More options …
Volume 37, Issue 5

Issues

Initiation and short crack growth behaviour of environmentally induced cracks in AA5083 H131 investigated across time and length scales

Visweswara C. GudlaORCID iD: https://orcid.org/0000-0003-3370-4883 / Alistair Garner
  • Henry Royce Institute, School of Materials, The University of Manchester, Manchester, Lancashire, M13 9PL, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Malte Storm
  • Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Parmesh Gajjar
  • Henry Royce Institute, School of Materials, The University of Manchester, Manchester, Lancashire, M13 9PL, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ James Carr
  • Henry Royce Institute, School of Materials, The University of Manchester, Manchester, Lancashire, M13 9PL, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benjamin C. Palmer
  • Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ John J. Lewandowski
  • Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Philip J. Withers
  • Henry Royce Institute, School of Materials, The University of Manchester, Manchester, Lancashire, M13 9PL, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ N. J. Henry Holroyd
  • Henry Royce Institute, School of Materials, The University of Manchester, Manchester, Lancashire, M13 9PL, UK
  • Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Timothy L. Burnett
  • Corresponding author
  • Henry Royce Institute, School of Materials, The University of Manchester, Manchester, Lancashire, M13 9PL, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-06-13 | DOI: https://doi.org/10.1515/corrrev-2019-0044

Abstract

Environmentally induced cracking (EIC) in a sensitized high-strength AA5083 H131 alloy has been investigated using time-lapse synchrotron X-ray computed tomography combined with post-mortem correlative characterization. Small corrosion features deliberately introduced in a pre-exposure step were found to be the site of initiation for over 95% of the 44 EIC cracks that developed under slow strain rate testing. Detailed analysis using three-dimensional electron backscatter diffraction and energy-dispersive spectroscopy analysis of a single crack confirmed the intergranular nature of the cracks from the start and that the pre-exposure corrosion was associated with an α-AlFeMnSi particle cluster. It also appears that several cracks may have initiated at this site, which later coalesced to form the 300-μm-long crack that ultimately developed. Of further note is the fact that initiation of the EIC cracks across the sample started below the yield strength and continued beyond the ultimate tensile strength. The most rapid crack propagation occurred during sample extension following a period of fixed displacement.

Keywords: 4D; correlative tomography; EIC; humid air; hydrogen embrittlement; non-propagating cracks

References

  • ASTM International. ASTM G67-18 Standard Test Method for Determining the Susceptibility to Intergranular Corrosion of 5XXX Series Aluminum Alloys by Mass Loss After Exposure to Nitric Acid (NAMLT Test). West Conshohocken, PA: ASTM International, 2018. doi: https://doi.org/10.1520/G0067-18.

  • Birbilis N, Buchheit RG. Electrochemical characteristics of intermetallic phases in aluminum alloys: an experimental survey and discussion. J Electrochem Soc 2005; 152: B140–B151.CrossrefGoogle Scholar

  • Birbilis N, Zhang R, Lim MLCC, Gupta RK, Davies CHJJ, Lynch SP, Kelly RG, Scully JR. Quantification of sensitization in AA5083-H131 via imaging Ga-embrittled fracture surfaces. Corrosion 2013; 69: 396–402.CrossrefGoogle Scholar

  • Bradley RS, Liu Y, Burnett TL, Zhou X, Lyon SB, Withers PJ, Gholinia A, Hashimoto T, Graham D, Gibbon SR, Hornberger B. Time-lapse lab-based X-ray nano-CT study of corrosion damage. J Microsc 2017; 267: 98–106.CrossrefGoogle Scholar

  • Brosi JK, Lewandowski JJ. Delamination of a sensitized commercial Al-Mg alloy during fatigue crack growth. Scr Mater 2010; 63: 799–802.CrossrefGoogle Scholar

  • Brosi JK, Seifi SM, Lewandowski JJ. Delamination of sensitized Al-Mg alloy during fatigue crack growth in room temperature air. Metall Mater Trans A Phys Metall Mater Sci 2012; 43: 3952–3956.CrossrefGoogle Scholar

  • Buchheit RG. A compilation of corrosion potentials reported for intermetallic phases in aluminum alloys. J Electrochem Soc 1995; 142: 3994.CrossrefGoogle Scholar

  • Burnett TL, McDonald SA, Gholinia A, Geurts R, Janus M, Slater T, Haigh SJ, Ornek C, Almuaili F, Engelberg DL, Thompson GE, Withers PJ. Correlative tomography. Sci Rep 2014; 4: 4711.Google Scholar

  • Burnett TL, Holroyd NJH, Scamans GM, Zhou X, Thompson GE, Withers PJ. The role of crack branching in stress corrosion cracking of aluminium alloys. Corros Rev 2015; 33: 443–454.Google Scholar

  • Burnett TL, Kelley R, Winiarski B, Contreras L, Daly M, Gholinia A, Burke MG, Withers PJ. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy 2016; 161: 119–129.CrossrefGoogle Scholar

  • Burnett TL, Holroyd NJH, Lewandowski JJ, Ogurreck M, Rau C, Kelley R, Pickering EJ, Daly M, Sherry AH, Pawar S, Slater TJA, Withers PJ. Degradation of metallic materials studied by correlative tomography. IOP Conf Ser Mater Sci Eng 2017; 219: 012001.CrossrefGoogle Scholar

  • Bushfield H, Cruder M, Farley R, Towers J. Marine aluminum plate – ASTM standard specification B 928 and the events leading to its adoption. Presented at the Meeting of the Society of Naval Architects and Marine Engineers, San Francisco, CA, October 2003.Google Scholar

  • Carter ST, Rotella J, Agyei RF, Xiao X, Sangid MD. Measuring fatigue crack deflections via cracking of constituent particles in AA7050 via in situ X-ray synchrotron-based micro-tomography. Int J Fatigue 2018; 116: 490–504.CrossrefGoogle Scholar

  • Connolly BJ, Horner DA, Fox SJ, Davenport AJ, Padovani C, Zhou S, Turnbull A, Preuss M, Stevens NP, Marrow TJ, Buffiere J-Y, Boller E, Groso A, Stampanoni M. X-ray microtomography studies of localised corrosion and transitions to stress corrosion cracking. Mater Sci Technol 2006; 22: 1076–1085.CrossrefGoogle Scholar

  • Crane CB, Gangloff RP. Stress corrosion cracking of Al-Mg alloy 5083 sensitized at low temperature. Corrosion 2016; 72: 221–241.Google Scholar

  • Crane CB, Kelly RG, Gangloff RP. Crack chemistry control of intergranular stress corrosion cracking in sensitized Al-Mg. Corrosion 2016; 72: 242–263.Google Scholar

  • CT5000 5KN in-situ tensile stage for μXCT applications | Deben UK – the microscopy accessory experts (no date). http://deben.co.uk/products/μxct-in-situ-holders-testing-stages/tensile-stages-for-x-ray-ct-tomography/ (6 August 2018).

  • Davenport AJ, Yuan Y, Ambat R, Connolly BJ, Strangwood M, Afseth A, Scamans GM. Intergranular corrosion and stress corrosion cracking of sensitised AA5182. Mater Sci Forum 2006; 519–521: 641–646.Google Scholar

  • Dix EHH, Anderson WAA, Shumaker MB. Influence of service temperature on the resistance of wrought aluminum-magnesium alloys to corrosion. Corrosion 1959; 15: 19–26.CrossrefGoogle Scholar

  • Dowd BA, Campbell GH, Marr RB, Nagarkar VV, Tipnis SV, Axe L, Siddons DP. Developments in synchrotron X-ray computed microtomography at the National Synchrotron Light Source. In: Bonse U, editor. Developments in X-ray Tomography II. Proc. SPIE 1999; 3772: 224–236.CrossrefGoogle Scholar

  • Eckermann F, Suter T, Uggowitzer PJ, Afseth A, Davenport AJ, Connolly BJ, Larsen MH, De Carlo F, Schmutz P. In situ monitoring of corrosion processes within the bulk of AlMgSi alloys using X-ray microtomography. Corros Sci 2008; 50: 3455–3466.CrossrefGoogle Scholar

  • Eckermann F, Suter T, Uggowitzer PJ, Afseth A, Stampanoni M, Marone F, Schmutz P. In situ microtomographically monitored and electrochemically controlled corrosion initiation and propagation in AlMgSi Alloy AA6016. J Electrochem Soc 2009; 156: C1.CrossrefGoogle Scholar

  • Gao W, Wang D, Seifi M, Lewandowski JJ. Anisotropy of corrosion and environmental cracking in AA5083-H128 Al-Mg alloy. Mater Sci Eng A 2018; 730: 367–379.CrossrefGoogle Scholar

  • Gao W, Wang D, Seifi M, Lewandowski JJ. Through-thickness inhomogeneity of environmentally assisted cracking (EAC) in AA5083-H128 alloy. Mater Sci Eng A, 2019; 740–741: 34–48.Google Scholar

  • Gillen C, Garner A, Plowman A, Race CP, Lowe T, Jones C, Moore KL, Frankel P. Advanced 3D characterisation of iodine induced stress corrosion cracks in zirconium alloys. Mater Charact 2018; 141: 348–361.CrossrefGoogle Scholar

  • Goswami R, Holtz RL. Transmission electron microscopic investigations of grain boundary beta phase precipitation in Al 5083 aged at 373 K (100°C). Metall Mater Trans A 2013; 44: 1279–1289.CrossrefGoogle Scholar

  • Gupta C, Toda H, Fujioka T, Kobayashi M, Hoshino H, Uesugi K, Takeuchi A, Suzuki, Y. Quantitative tomography of hydrogen precharged and uncharged Al-Zn-Mg-Cu alloy after tensile fracture. Mater Sci Eng A, 2016a; 670: 300–313.CrossrefGoogle Scholar

  • Gupta C, Toda H, Fujioka T, Kobayashi M, Hoshino H, Uesugi K, Takeuchi A, Suzuki, Y. State of 3-D micro-damage in hydrogen redistributed regions of precharged high strength aluminium alloy. Corros Sci 2016b; 111: 26–38.CrossrefGoogle Scholar

  • Gürsoy D, De Carlo F, Xiao X, Jacobsen C. TomoPy: a framework for the analysis of synchrotron tomographic data. J Synchrotron Radiat 2014; 21: 1188–1193.CrossrefGoogle Scholar

  • Henthorne, M. The slow strain rate stress corrosion cracking test-a 50 year retrospective. Corrosion 2016; 72: 1488–1518.CrossrefGoogle Scholar

  • Holroyd NJH, Evans JT, Scamans GM. Pre-exposure embrittlement of an Al-Cu-Mg alloy, AA2024-T351. Corros Rev 2015; 33: 361–372.Google Scholar

  • Holroyd NJH, Scamans GM. Environmental degradation of marine aluminum alloys-Past, present, and future. Corrosion 2016; 72: 136–143.Google Scholar

  • Holroyd NJH, Burnett TL, Seifi M, Lewandowski JJ. Improved understanding of environment-induced cracking (EIC) of sensitized 5XXX series aluminium alloys. Mater Sci Eng A, 2017a; 682: 613–621.CrossrefGoogle Scholar

  • Holroyd NJH, Burnett TL, Seifi M, Lewandowski JJ. Pre-exposure embrittlement of a commercial Al-Mg-Mn alloy, AA5083-H131. Corros Rev 2017b; 35: 275–290.Google Scholar

  • Horner DA, Connolly BJ, Zhou S, Crocker L, Turnbull, A. Novel images of the evolution of stress corrosion cracks from corrosion pits. Corros Sci 2011; 53: 3466–3485.CrossrefGoogle Scholar

  • Jones RH. The influence of hydrogen on the stress-corrosion cracking of low-strength Al-Mg alloys. JOM 2003; 55: 42–46.CrossrefGoogle Scholar

  • Jones RH, Baer DR, Danielson MJ, Vetrano JS. Role of Mg in the stress corrosion cracking of an Al-Mg alloy. Metall Mater Trans A: Phys Metall Mater Sci 2001; 32: 1699–1711.CrossrefGoogle Scholar

  • Jones RH, Novacor RTC. Danielson MJ. Role of hydrogen in stress corrosion cracking of low-strength AL-MG alloys. Corrosion 2003; 2003: 1–11.Google Scholar

  • Jones RH, Gertsman VY, Vetrano JS, Windisch CF. Crack-particle interactions during intergranular stress corrosion of AA5083 as observed by cross-section transmission electron microscopy. Scr Mater 2004; 50: 1355–1359.CrossrefGoogle Scholar

  • Knight SP, Salagaras M, Wythe AM, De Carlo F, Davenport AJ, Trueman AR. In situ X-ray tomography of intergranular corrosion of 2024 and 7050 aluminium alloys. Corros Sci 2010; 52: 3855–3860.CrossrefGoogle Scholar

  • Knight SP, Salagaras M, Trueman AR. The study of intergranular corrosion in aircraft aluminium alloys using X-ray tomography. Corros Sci 2011; 53: 727–734.CrossrefGoogle Scholar

  • Liu X, Frankel GS, Zoofan B, Rokhlin SI. In Situ X-ray radiographic study of stress corrosion cracking in AA2024-T3. Corrosion 2006a; 62: 217–230.CrossrefGoogle Scholar

  • Liu X, Frankel GS, Zoofan B, Rokhlin SI. Transition from Intergranular Corrosion to Intergranular Stress Corrosion Cracking in AA2024-T3. J Electrochem Soc 2006b; 153: B42.CrossrefGoogle Scholar

  • Liu X, Frankel GS, Zoofan B, Rokhlin SI. In-situ observation of intergranular stress corrosion cracking in AA2024-T3 under constant load conditions. Corros Sci 2007; 49: 139–148.CrossrefGoogle Scholar

  • Oguocha INAA, Adigun OJ, Yannacopoulos, S. Effect of sensitization heat treatment on properties of Al-Mg alloy AA5083-H116. J Mater Sci 2008; 43: 4208–4214.CrossrefGoogle Scholar

  • Polmear, I. Light alloys: from traditional alloys to nanocrystals. P. In.: 4th ed., Elsevier Science, 2006: 421.Google Scholar

  • Rivers, M. Synchrotron ‘pink beam’ tomography for the study of dynamic processes. SPIE Newsroom 2016.Google Scholar

  • Scamans GM, Holroyd NJH, Tuck CDS. The role of magnesium segregation in the intergranular stress corrosion cracking of aluminium alloys. Corros Sci 1987; 27: 329–347.CrossrefGoogle Scholar

  • Scotto D’Antuono D, Gaies J, Golumbfskie W, Taheri ML. Grain boundary misorientation dependence of β phase precipitation in an Al-Mg alloy. Scr Mater 2014; 76: 81–84.CrossrefGoogle Scholar

  • Searles JL, Gouma PI, Buchheit RG. Stress corrosion cracking of sensitized AA5083 (Al-4.5Mg-1.0Mn). Metall Mater Trans A: Phys Metall Mater Sci 2001; 32: 2859–2867.CrossrefGoogle Scholar

  • Seifi M, Samimi P, Ghamarian I, Collins PC, Lewandowski JJ. Grain orientation effects on delamination during fatigue of a sensitized Al–Mg alloy. Philos Mag Lett 2015; 95: 526–533.CrossrefGoogle Scholar

  • Seifi M, Holroyd NJH, Lewandowski JJ. Deformation rate and sensitization effects on environmentally assisted cracking of Al-Mg naval alloys. Corrosion 2016; 72: 264–283.Google Scholar

  • Seifi M, Ghamarian I, Samimi P, Collins PC, Holroyd NJH, Lewandowski JJ. Sensitization and remediation effects on environmentally assisted cracking of Al-Mg naval alloys. Corros Sci 2018; 138: 219–241.CrossrefGoogle Scholar

  • Seong J, Yang F, Scheltens F, Frankel GS, Sridhar N. Influence of the altered surface layer on the corrosion of AA5083. J Electrochem Soc 2015; 162: C209–C218.CrossrefGoogle Scholar

  • Singh SS, Williams JJ, Lin MF, Xiao X, De Carlo F, Chawla, N. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography. Mater Res Lett 2014; 2: 217–220.CrossrefGoogle Scholar

  • Singh SS, Williams JJ, Xiao X, De Carlo F, Chawlal, N. In situ three dimensional (3D) X-ray synchrotron tomography of corrosion fatigue in Al7075 alloy. Fatigue of Materials II 2016a; 104: 17–25.Google Scholar

  • Singh SS, Williams JJ, Stannard TJ, Xiao X, De Carlo F, Chawla, N. Measurement of localized corrosion rates at inclusion particles in AA7075 by in situ three dimensional (3D) X-ray synchrotron tomography. Corros Sci 2016b; 104: 330–335.CrossrefGoogle Scholar

  • Singh SS, Stannard TJ, Xiao X, Chawla, N. In situ X-ray microtomography of stress corrosion cracking and corrosion fatigue in aluminum alloys. JOM 2017; 69: 1404–1414.CrossrefGoogle Scholar

  • Slater TJA, Bradley RS, Bertali G, Geurts R, Northover SM, Burke MG, Haigh SJ, Burnett TL, Withers PJ. Multiscale correlative tomography: an investigation of creep cavitation in 316 stainless steel. Sci Rep 2017; 7: 7332.CrossrefGoogle Scholar

  • Staehle RW. Quantitative micro-nano (QMN) approach to SCC mechanism and prediction-starting a third meeting. In: Busby JT, Ilevbare G, Andresen PL, editors. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors. Cham: Springer, 2011.Google Scholar

  • Stannard TJ, Williams JJ, Singh SS, Sundaram Singaravelu AS, Xiao X, Chawla, N. 3D time-resolved observations of corrosion and corrosion-fatigue crack initiation and growth in peak-aged Al 7075 using synchrotron X-ray tomography. Corros Sci 2018; 138: 340–352.CrossrefGoogle Scholar

  • Tan L, Allen TR. Effect of thermomechanical treatment on the corrosion of AA5083. Corros Sci 2010; 52: 548–554.CrossrefGoogle Scholar

  • Thermo Fisher Scientific. Amira-Avizo Software. https://www.fei.com/software/amira-avizo/ (13 January 2019). 2018.

  • TomoPy — TomoPy 1.1.3 documentation. https://tomopy.readthedocs.io/en/latest/ (6 August 2018) (no date).

  • Turnbull, A. Corrosion pitting and environmentally assisted small crack growth. Proc R Soc A 2014; 470: 20140254–20140254.CrossrefGoogle Scholar

  • Turnbull, A. Characterising the early stages of crack development in environment-assisted cracking. Corros Eng Sci Technol 2017; 52: 533–540.CrossrefGoogle Scholar

  • Vallabhaneni R, Stannard TJ, Kaira CS, Chawla, N. 3D X-ray microtomography and mechanical characterization of corrosion-induced damage in 7075 aluminium (Al) alloys. Corros Sci 2018; 139: 97–113.CrossrefGoogle Scholar

  • Vargel C. Corrosion of aluminium. Amsterdam: Elsevier B.V., 2004: 1–626.Google Scholar

  • Wearmouth WR, Dean GP, Parkins RN. Role of stress in the stress corrosion cracking of a Mg-Al alloy. Corrosion 1973; 29: 251–260.CrossrefGoogle Scholar

  • Yang YK, Allen, T. Direct visualization of β phase causing intergranular forms of corrosion in Al-Mg alloys. Mater Charact 2013; 80: 76–85.CrossrefGoogle Scholar

  • Yuan Y, Ambat R, Davenport AJ, Strangwood M, Afseth A, Scamans GM. Crystallographic effects in intergranular corrosion of an Al-Mg alloy. Electrochem Soc Proc 2001; 22: 273–278.Google Scholar

  • Zhang R, Knight SP, Holtz RL, Goswami R, Davies CHJ, Birbilis N. A survey of sensitization in 5xxx series aluminum alloys. Corros Sci 2016; 72: 144–159.CrossrefGoogle Scholar

  • Zhao X, Frankel GS, Zoofan B, Rokhlin SI. In situ X-ray radiographic study of intergranular corrosion in aluminum alloys. Corrosion 2003; 59: 1012–1018.CrossrefGoogle Scholar

About the article

Received: 2019-02-22

Accepted: 2019-05-15

Published Online: 2019-06-13

Published in Print: 2019-09-25


Funding Source: European Research Council

Award identifier / Grant number: CORREL-CT No. 695638

Funding Source: Engineering and Physical Sciences Research Council

Award identifier / Grant number: EP/M010619

Award identifier / Grant number: EP/K004530

Award identifier / Grant number: EP/F007906

Award identifier / Grant number: EP/F001452

Award identifier / Grant number: EP/I02249X

Award identifier / Grant number: EP/F028431

V.C.G., P.G., J.C., T.L.B. and P.J.W. are grateful for funding from the European Research Council under grant CORREL-CT No. 695638. The experimental facilities in the Henry Royce Institute for Advanced Materials established through the Engineering and Physical Sciences Research Council funding for Henry Moseley X-ray Imaging Facility under grant nos. EP/M010619, EP/K004530, EP/F007906, Funder Id: http://dx.doi.org/ 10.13039/501100000266, EP/F001452, Funder Id: http://dx.doi.org/10.13039/501100000266, EP/I02249X, Funder Id: http://dx.doi.org/10.13039/501100000266 and EP/F028431, Funder Id: http://dx.doi.org/10.13039/501100000266 are acknowledged in addition to the Higher Education Funding Council for England funding through the UK Research Partnership Investment Funding Manchester RPIF Round 2 for the Multiscale Characterisation Facility. Additional support has been provided by the Arthur P. Armington Professorship (J.J.L.) and ONR-N00014-17-1-2573. Supply of materials was from the Alcoa Technical Centre. This work was carried out with the support of the Diamond Light Source, instrument I13 (proposal MT18165-1).


Citation Information: Corrosion Reviews, Volume 37, Issue 5, Pages 469–481, ISSN (Online) 2191-0316, ISSN (Print) 0334-6005, DOI: https://doi.org/10.1515/corrrev-2019-0044.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in