Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Corrosion Reviews

Editor-in-Chief: Latanision, Ronald M. / Rebak, Raúl B.

6 Issues per year


IMPACT FACTOR 2016: 1.085
5-year IMPACT FACTOR: 1.655

CiteScore 2016: 1.17

SCImago Journal Rank (SJR) 2016: 0.427
Source Normalized Impact per Paper (SNIP) 2016: 0.675

Online
ISSN
2191-0316
See all formats and pricing
More options …
Volume 34, Issue 4 (Sep 2016)

Issues

On the performance of commercially available corrosion-resistant nickel alloys: a review

César A.C. Sequeira
  • Corresponding author
  • Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David S.P. Cardoso
  • Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luís Amaral
  • Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Biljana Šljukić
  • Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Diogo M.F. Santos
  • Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-12 | DOI: https://doi.org/10.1515/corrrev-2016-0014

Abstract

The corrosion behavior of nickel (Ni)-based alloys used for low-temperature aqueous or condensed systems is reviewed in detail in this paper. Commercially available pure Ni, nickel-copper (Ni-Cu), nickel-molybdenum (Ni-Mo), nickel-chromium-molybdenum (Ni-Cr-Mo), and nickel-chromium-iron (Ni-Cr-Fe) alloys as well as cast Ni-based alloys are addressed. It is shown that Ni-Cr-Mo alloys are multipurpose alloys that can be used in both reducing and oxidizing conditions. Special attention is given to a few Ni alloys, which not only extend the range of usefulness of existing alloys by overcoming their limitations but are also reliable and cost-effective and have opened new areas of applications.

Keywords: cast nickel-based alloys; corrosion-resistant nickel alloys; nickel-chromium alloys; nickel-copper alloys; nickel-molybdenum alloys

References

  • Aaboubi O. Hydrogen evolution activity of Ni-Mo coating electrodeposited under magnetic field control. Int J Hydrogen Energy 2011; 36: 4702–4709.Google Scholar

  • Agarwal DC, Köler M. Corrosion/97. Houston: NACE International, paper 424, 1997.Google Scholar

  • Agarwal DC, Wessel JK, editors. The handbook of advanced materials: enabling new designs. New York: John Wiley & Sons, 2004.Google Scholar

  • Ali JA, Ambrose JR. The dissolution mechanism of Monel 400 in Na2SO4 solutions. Corros Sci 1991; 32: 799–814.Google Scholar

  • Alves H. Selected examples of the use of nickel alloys and high-alloy special stainless steels in chemical plants. In: Heubner U, Klöwer J. Nickel alloys and high-alloyed special stainless steels – properties-manufacturing-application, 4th completely revised edition. Expert Verlag, 2012.Google Scholar

  • Alves H, Heubner U. Shreir’s corrosion, Vol. 3. Amsterdam: Elsevier, 2010.Google Scholar

  • Asphahani AI. Localized corrosion of high-performance alloys. Mater Perform 1980; 19: 9–21.Google Scholar

  • Badawy WA, Ismail KM, Fathi AM. Effect of Ni content on the corrosion behavior of Cu-Ni alloys in neutral chloride solutions. Electrochim Acta 2005; 50: 3603–3608.Google Scholar

  • Badawy WA, Ismail KM, Fathi AM. Corrosion control of Cu-Ni alloys in neutral chloride solutions by amino acids. Electrochim Acta 2006; 51: 4182–4189.Google Scholar

  • Badawy WA, Ismail KM, Fathi AM. The influence of the copper/nickel ratio on the electrochemical behavior of Cu-Ni alloys in acidic sulfate solutions. J Alloy Compd 2009; 484: 365–370.Google Scholar

  • Badawy WA, El-Rabiee MM, Helal NH, Nady H. Effect of nickel content on the electrochemical behavior of Cu-Al-Ni alloys in chloride free neutral solutions. Electrochim Acta 2010; 56: 913–918.Google Scholar

  • Bogar FD, Peterson MH. Corrosion/85. Houston: NACE International, paper 207, 1985.Google Scholar

  • Braun WJ, Fink FW, Ericson GL. The corrosion of Monel and 70-30 cupronickel in hydrofluoric acid. Columbus, Ohio: Battelle Memorial Institute: Atomic Energy Commission, 1957.Google Scholar

  • Brizuela F, Procaccini R, Cere S, Vazquez M. Anodically grown films on copper and copper-nickel alloys in slightly alkaline solutions. J Appl Electrochem 2006; 36: 583–590.Google Scholar

  • Cardoso MV, Amaral ST, Martini EMA. Temperature effect in the corrosion resistance of Ni-Fe-Cr alloy in chloride medium. Corros Sci 2008; 50: 2429–2436.Google Scholar

  • Cardoso DSP, Eugénio S, Silva TM, Santos DMF, Sequeira CAC, Montemor FM. Hydrogen evolution on nanostructured Ni-Cu foams. RSC Adv 2015; 5: 43456–43461.Google Scholar

  • Celin R, Tehovnik F. Degradation of a Ni-Cr-Fe alloy in a pressurised-water nuclear power plant. Mater Technol 2011; 45: 151–157.Google Scholar

  • Chawla SL, Gupta RK. Materials selection for corrosion control. Materials Park, Ohio: ASM International, 1993.Google Scholar

  • Crook P. Corrosion/96. Houston: NACE International, paper 412, 1996.Google Scholar

  • Crook P. Corrosion-resistant nickel alloys. Part I. Adv Mater Process 2007; 165: 37–39.Google Scholar

  • Crook P, Caruso ML, Kingseed DA. Corrosion resistance of a new, wrought Ni-Cr-Mo alloy. Mater Perform 1997; 36: 49–52.Google Scholar

  • Dillon CP. Some characteristics of nickel and nickel-based alloy. Mater Perform 1997; 36: 53–55.Google Scholar

  • Druska P, Strehblow HH. Quantitative determination of the passive layer on Cu-Ni alloys. Surf Interface Anal 1995; 23: 440–450.Google Scholar

  • Du JH, Lu XD, Qu JL, Deng Q, Zhuang JY, Zhong ZY. Microstructure and mechanical properties of novel 718 superalloy. Acta Metall Sin 2006; 19: 418–424.Google Scholar

  • Dutta RS. Corrosion aspects of Ni-Cr-Fe based and Ni-Cu based steam generator tube materials. J Nucl Mater 2009; 393: 343–349.Google Scholar

  • El-Sherik AM. Synthesis, structure and properties of electrodeposited bulk nanocrystalline nickel. PhD thesis. Kingston, Ontario: Queen’s University, 1993.Google Scholar

  • Flint GN. The corrosion resistance of cast nickel-molybdenum-iron alloys. Metallurgica 1960; 62: 195–200.Google Scholar

  • Friend WZ. Corrosion of nickel and nickel-base alloys. New York: John Wiley & Sons, 1980.Google Scholar

  • Ghosh SK, Dey GK, Dusane RO, Grover AK. Improved pitting corrosion behaviour of electrodeposited nanocrystalline Ni-Cu alloys in 3.0 wt.% NaCl solution. J Alloy Compd 2006; 426: 235–243.Google Scholar

  • Gonzalez-Buch C, Herraiz-Cardona I, Ortega E, Garcia-Anton J. Study of the catalytic activity of 3D macroporous Ni and NiMo cathodes for hydrogen production by alkaline water electrolysis. J Appl Electrochim 2016; 46: 791–803.Google Scholar

  • Gossett JL, Schweitzer PA, editors. Corrosion engineering handbook. New York: Marcel Dekker, Inc., 1996.Google Scholar

  • Gruss KA, Cragnolino GA, Dunn DS, Sridhar N. Corrosion/98. Houston: NACE International, paper 149, 1998.Google Scholar

  • Harrod DL, Gold RE, Jacko RJ. Alloy optimization for PWR steam generator heat-transfer tubing. Jom-J Min Met Mat S 2001; 53: 14–17.Google Scholar

  • Heubner U. Corrosion resistance of nickel alloys and high-alloy special stainless steels – material overview and metallurgical principles. In: Heubner U, Klöwer J. Nickel alloys and high-alloyed special stainless steels – properties-manufacturing-application, 4th completely revised edition. Expert Verlag, 2012: 1–39.Google Scholar

  • Highfield J, Claude E, Oguro K. Electrocatalytic synergism in Ni-Mo cathodes for hydrogen evolution in acid medium: a new model. Electrochim Acta 1999; 44: 2805–2814.Google Scholar

  • Hodge FG. Corrosion and corrosion protection handbook. In: Schweitzer PA, editor. New York: Marcel Dekker, 1983.Google Scholar

  • Hoffmeister H. Modeling the effects of local anodic acidification on stress corrosion cracking of nickel. Corrosion 2011; 67: 075002-1–075002-12.Google Scholar

  • Hummel RE, Smith RJ. The passivation of nickel in aqueous solutions – III. The passivation of Ni-30 wt.% Cu alloys as studied by in situ electrochemical and optical techniques. Corros Sci 1988; 28: 279–288.Google Scholar

  • Huot JY, Trudeau ML, Schulz R. Low hydrogen overpotential nanocrystalline Ni-Mo cathodes for alkaline water electrolysis. J Electrochem Soc 1991; 138: 1316–1321.Google Scholar

  • International Nickel Company. New York: Corrosion Engineering Bulletin CEB-5, Inco, 1968.Google Scholar

  • Ismail KM, Fathi AM, Badawy WA. Effect of nickel content on the corrosion and passivation of copper-nickel alloys in sodium sulfate solutions. Corrosion 2004; 60: 795–803.Google Scholar

  • Jakšić MM. Hypo-hyper-d-electronic interactive nature of synergism in catalysis and electrocatalysis for hydrogen reactions. Electrochim Acta 2009; 45: 4085–4099.Google Scholar

  • Jović BM, Jović VD, Maksimović VM, Pavlović MG. Characterization of electrodeposited powders of the system Ni-Mo-O. Electrochim Acta 2008; 53: 4796–4804.Google Scholar

  • Kane RD, Watkins M, Jacobs DF, Hancock GL. Factors influencing the embrittlement of cold worked high alloy materials in H2S environments. Corrosion 1977; 33: 309–320.Google Scholar

  • Klarstrom DL. Proceedings of the 12th International Corrosion Congress. Houston: NACE International, 1993.Google Scholar

  • Koch CC, Ovid’ko IA, Seal S, Veprek S. Structural nanocrystalline materials, fundamentals and applications. Cambridge, UK: Cambridge University Press, 2007.Google Scholar

  • Kolts J. Corrosion/82. Houston: NACE International, paper 241, 1982.Google Scholar

  • Kolts J. Metals handbook, 9th ed., Vol. 13. Ohio: ASM International, Metals Park, 1987.Google Scholar

  • Krstajić NV, Jović VD, Gajić-Krstajić L, Jović BM, Antozzi AL, Martelli GN. Electrodeposition of Ni-Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution. Int J Hydrogen Energy 2008; 33: 3676–3689.Google Scholar

  • Krstajić NV, Lacnjevac U, Jović BM, Mora S, Jović VD. Non-noble metal composite cathodes for hydrogen evolution. Part II: the Ni-MoO2 coatings electrodeposited from nickel chloride-ammonium chloride bath containing MoO2 powder particles. Int J Hydrogen Energy 2011; 36: 6450–6461.Google Scholar

  • Levey PR, Vanbennekom A. A mechanistic study of the effects of nitrogen on the corrosion properties of stainless steels. Corrosion 1995; 51: 911–921.Google Scholar

  • Liu Y, Zhao Q. Study of electroless Ni-Cu-P coatings and their anti-corrosion properties. Appl Surf Sci 2004; 228: 57–62.Google Scholar

  • Liu GC, Yang LJ, Wang LD, Wang SL, Liu CY, Wang J. Corrosion behavior of electroless deposited Ni-Cu-P coating in flue gas condensate. Surf Coat Technol 2010; 204: 3382–3386.Google Scholar

  • Luce WA. Cast nickel-molybdenum and nickel-molybdenum-chromium alloys for severe corrosion services. Chem Eng Prog 1948; 44: 453–458.Google Scholar

  • Luo BP, Gong ZQ, Ren BY, Yang YF, Chen MJ. Surface structure and catalytic activity of electrodeposited Ni-Fe-Co-Mo alloy electrode by partially leaching Mo and Fe. Trans Nonferr Metal Soc China 2006; 16: 623–628.Google Scholar

  • Marcus P, Moscatelli M, Cohen C, Gyulai J, Schmaus D, Sotto M. Natural oxide and passive films formed on Ni-Mo alloys. J Electrochem Soc 1988; 135: 2706–2711.Google Scholar

  • Marioli JM, Kuwana T. Electrochemical detection of carbohydrates at nickel-copper and nickel-chromium-iron alloy electrodes. Electroanalysis 1993; 5: 11–15.Google Scholar

  • Martin FJ, Lemieux EJ, Natishan PM, O’Grady W. Corrosion/2006. San Diego, CA, 2006.Google Scholar

  • McCafferty E. Oxide networks, graph theory, and the passivity of Ni-Cr-Mo ternary alloys. Corros Sci 2008; 50: 3622–3628.Google Scholar

  • McCright RD, Clarke WL. Corrosion/98. Houston: NACE International, paper 159, 1998.Google Scholar

  • Memming R. Semiconductor electrochemistry. Weinheim, Germany: Wiley-VCH, 2001.Google Scholar

  • Mitton DB, Yoon J-H, Cline JA, Kim H-S, Eliaz N, Latanision RM. Corrosion behavior of nickel-based alloys in supercritical water oxidation systems. Ind Eng Chem Res 2000; 39: 4689–4696.Google Scholar

  • Moniz B, MacDiarmid JA. Applications and materials performance. In: Proceedings of Nickel-Cobalt 97 International Symposium, Vol. IV, p. 59. Montréal, Canada: Canadian Institute of Mining, Metallurgy and Petroleum, August 17–20, 1997.Google Scholar

  • Munoz AI, Anton JG, Guinin JL, Herranz VP. Comparison of inorganic inhibitors of copper, nickel and copper-nickels in aqueous lithium bromide solution. Electrochim Acta 2004; 50: 957–966.Google Scholar

  • Nady H, Helal NH, El-Rabiee MM, Badawy WA. The role of Ni content on the stability of Cu-Al-Ni ternary alloy in neutral chloride solutions. Mater Chem Phys 2012; 134: 945–950.Google Scholar

  • Nakahara M, Shoji T. Stress corrosion cracking susceptibility of nickel-molybdenum alloys by slow strain rate and immersion testing. Corrosion 1996; 52: 634–642.Google Scholar

  • Navarro-Flores E, Chong Z, Omanovic S. Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J Mol Catal A Chem 2005; 226: 179–197.Google Scholar

  • NiDI. Corrosion resistance of Ni-containing alloys in hydrofluoric acid, hydrogen fluoride and fluorine. Nickel Development Institute, Publication 443 (CEB-5), 1968.

  • Pawel SJ. Corrosion of high-alloy materials in aqueous hydrofluoric acid environments. Corrosion 1994; 50: 963–971.Google Scholar

  • Payer JH, Berry WE, Parkins RN. Stress-corrosion cracking – the slow strain-rate technique. ASTM STP 665. Philadelphia: ASTM, 1979.Google Scholar

  • Peric B, Grubac Z, Sablic L. Studies of corrosion resistance of passive layers on Al-Ni alloys in the presence of chloride ion. Croat Chem Acta 1994; 67: 289–296.Google Scholar

  • Postlethwaite J, Scoular RJ, Dobbin MH. Localized corrosion of molybdenum-bearing nickel alloys in chloride solutions. Corrosion 1988; 44: 199–203.Google Scholar

  • Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions. Houston: National Association of Corrosion Engineers, 1974.Google Scholar

  • Raj IA. On the catalytic activity of Ni-Mo-Fe composite surface coatings for the hydrogen cathodes in the industrial electrochemical production of hydrogen. Appl Surf Sci 1992; 59: 245–252.Google Scholar

  • Rauscher T, Muller CI, Schmidt R, Kieback B, Röntzsch L. Ni-Mo-B alloys as cathode materials for alkaline water electrolysis. Int J Hydrogen Energy 2016; 41: 2165–2176.Google Scholar

  • Rebak RB. Corrosion and environmental degradation. Meinheim, Germany: John Wiley & Sons, 2000.Google Scholar

  • Rebak RB. Corrosion/2005 and NACE Expo. Houston, TX, 2005.Google Scholar

  • Rebak RB, Koon NE. Corrosion/98. Houston: NACE International, paper 153, 1998.Google Scholar

  • Rebak RB, Crook P. Nickel alloys for corrosive environments. Adv Mater Process 2000; 157: 37–42.Google Scholar

  • Revie RW. Uhlig’s corrosion handbook. USA: Wiley, 2011.Google Scholar

  • Revie RW, Uhlig HH. Corrosion and corrosion control, 4th ed. New Jersey: John Wiley & Sons, 2008.Google Scholar

  • Rofagha R, Langer R, El-Sherik AM, Erb U, Palambo G, Aust KT. The corrosion behaviour of nanocrystalline nickel. Scripta Metall Mater 1991; 25: 2867–2872.Google Scholar

  • Rosalbino F, Scavino G, Grande MA. Electrocatalytic activity of Ni-Fe-M (M=Cr, Mn, Cu) sintered electrodes for hydrogen evolution reaction in alkaline solution. J Electroanal Chem 2013; 694: 114–121.Google Scholar

  • Rosecrans PM, Duquette DJ. Formation kinetics and rupture strain of Ni-Cr-Fe alloy corrosion films formed in high-temperature water. Metall Mater Trans A 2001; 32: 3015–3021.Google Scholar

  • Roy AK, Fleming DL, Lum BY. Localized corrosion behavior of candidate nuclear waste package container materials. Mater Perform 1998; 37: 54–58.Google Scholar

  • San NO, Nazir H, Donmez G. Microbial corrosion of Ni-Cu alloys by aeromonas eucrenophila bacterium. Corros Sci 2011; 53: 2216–2221.Google Scholar

  • San NO, Nazir H, Donmez G. Microbiologically influenced corrosion failure analysis of nickel-copper alloy coatings by aeromonas salmonicida and delftia acidovorans bacterium isolated from pipe system. Eng Fail Anal 2012; 25: 63–70.Google Scholar

  • Schmickler W. Interfacial electrochemistry. New York: Oxford University Press, 1996.Google Scholar

  • Schussler A, Exner HE. The corrosion of nickel-aluminium bronzes in seawater-I. Protective layer formation and the passivation mechanism. Corros Sci 1993; 34: 1793–1802.Google Scholar

  • Schutze M, Roche M, Bender R, editors. Corrosion resistance of steels, nickel alloys and zinc in aqueous media. London, UK: John Wiley & Sons, 2015.Google Scholar

  • Schweitzer PA. Corrosion resistance tables, 4th ed. New York: Marcel Dekker, 1995.Google Scholar

  • Sedriks AJ. Plenary Lecture-1986: effects of alloy composition and microstructure on the passivity of stainless steels. Corrosion 1986; 42: 376–389.Google Scholar

  • Sequeira CAC, Hocking MG. Hot corrosion of nimonic 105 in sodium sulfate-sodium chloride melts. Corrosion 1981; 37: 392–407.Google Scholar

  • Sikora E, Macdonald DD. Nature of the passive film on nickel. Electrochim Acta 2002; 48: 69–77.Google Scholar

  • Solmaz R, Donner A, Kardas G. The stability of hydrogen evolution activity and corrosion behaviour of NiCu coatings with long-term electrolysis in alkaline solution. Int J Hydrogen Energy 2009; 34: 2089–2094.Google Scholar

  • Sridhar N, Cragnolino GA. Stress corrosion cracking. Ohio: ASM, Materials Park, 1992.Google Scholar

  • Sridhar N, Kargol JA, Fiore NF. Effect of low temperature aging on hydrogen-induced crack growth in a Ni-base superalloy. Scripta Metall Mater 1980; 14: 1257–1260.Google Scholar

  • Staehle R. Control of corrosion on the secondary side of steam generators. Houston: NACE International, 1996.Google Scholar

  • Sui F, Chen L, Liu X, Wang L, Li W. Temperature field analysis and its application in hot continuous rolling of Inconel 718 superalloy. Acta Metall Sin 2009; 22: 81–90.Google Scholar

  • Sziraki L, Kuzmann E, El-Sharif M, Chisholm C, Principi G, Tosello C, Vertes A. Electrochemical behavior of electrodeposited strongly disordered Fe-Ni-Cr alloys. Electrochem Commun 2000; 2: 619–625.Google Scholar

  • Szklarska-Smialowska Z. Pitting corrosion of metals. Houston: National Association of Corrosion Engineers, 1986.Google Scholar

  • Takizawa Y, Sekine I. Corrosion/85. Houston: NACE International, paper 141, 1985.Google Scholar

  • Tang WZ, Gai YX, Zheng HY. Deterioration of copper-containing mischmetal-nickel-based hydrogen absorption electrode materials. J Alloy Compd 1995; 224: 292–298.Google Scholar

  • Tasic GS, Meslovara SP, Zugic DL, Maksic AD, Kaninsky MPM. Characterization of the Ni-Mo catalyst formed in situ during hydrogen generation from alkaline water electrolysis. Int J Hydrogen Energy 2011; 36: 11588–11595.Google Scholar

  • Theus GJ, Emanuelson RH, Russell J. Corrosion/82. Houston: NACE International, paper 209, 1982.Google Scholar

  • Turchi PEA, Kaufman L, Liu ZK. Modeling of Ni-Cr-Mo based alloys. Part I: phase stability. Calphad 2006; 30: 70–87.Google Scholar

  • Wahl V. The use of nickel alloys and stainless steels in environmental engineering. In: Heubner U, Klöwer J. Nickel alloys and high-alloyed special stainless steels – properties-manufacturing-application, 4th completely revised edition. Expert Verlag, 2012.Google Scholar

  • Wang M, Wang Z, Yu X, Guo Z. Facile one-step electrodeposition preparation of porous NiMo film as electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy 2015; 40: 2173–2181.Google Scholar

  • Zhao Q, Liu Y. Electroless Ni-Cu-P-PTFE composite coatings and their anticorrosion properties. Surf Coat Technol 2005; 200: 2510–2514.Google Scholar

  • Zhao SQ, Jiang Y, Dong JX, Xie XS. Experimental investigation and thermodynamic calculation on phase precipitation of Inconel 740. Acta Metall Sin 2006; 19: 425–431.Google Scholar

  • Ziemniak SE, Hanson M. Corrosion behavior of NiCrFe alloy 600 in high temperature, hydrogenated water. Corros Sci 2006; 48: 498–521.Google Scholar

About the article

Received: 2016-02-29

Accepted: 2016-07-18

Published Online: 2016-08-12

Published in Print: 2016-09-01


Citation Information: Corrosion Reviews, ISSN (Online) 2191-0316, ISSN (Print) 0334-6005, DOI: https://doi.org/10.1515/corrrev-2016-0014.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in