Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical and Process Engineering

The Journal of Committee of Chemical and Process of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.971

CiteScore 2016: 1.03

SCImago Journal Rank (SJR) 2016: 0.395
Source Normalized Impact per Paper (SNIP) 2016: 0.873

Open Access
See all formats and pricing
More options …

Durability and narrow pore size distribution (PSD) of carbons fabricated from Salix viminalis wood

Jerzy Łukaszewicz / Krzysztof Zieliński
Published Online: 2011-10-05 | DOI: https://doi.org/10.2478/v10176-011-0015-5

Durability and narrow pore size distribution (PSD) of carbons fabricated from Salix viminalis wood

Microporous carbon molecular sieves of extremely narrow pore size distribution were obtained by carbonization of a novel raw material (Salix viminalis). The precursor is inexpensive and widely accessible. The pore capacity and specific surface area are upgradable by H3PO4 treatment without significant change of narrowed PSD. The dominating pore size indicates that these molecular sieves are a potential competitor to other nanoporous materials such as opened and purified carbon nanotubes.

Keywords: Salix viminalis; carbon molecular sieves; specific surface and pore structure; wooden charcoal; activated carbon

  • Albornoz A., Labady M., Lopez M., Laine J., 1999. Evidence for the formation of slit mesopores in activated carbon. J. Mater. Sci. Lett., 18, 1999-2000. DOI: 10.1023/A:1006638017436.CrossrefGoogle Scholar

  • Bekyarova E., Kaneko K., Yudasaka M., Kasuya D., Iijima S., Huidobro A., Rodriguez-Reinoso F., 2003. Controlled opening of single-wall carbon nanohorns by heat treatment in carbon dioxide. J. Phys. Chem. B, 107, 4479-4484. DOI: 10.1021/jp026737nCrossrefGoogle Scholar

  • Gierak A., Seredych M., 2002. The methods of preparation and modification of surface properties of synthetic carbon adsorbents. Ann. Uni. Mariae Curie-Sklodowska (Lublin, Polonia), section AA, vol. LVII, 119-39.Google Scholar

  • Herzog A., Reznik B., Chen T., Graule T., Vogt U., 2006. Structural changes in activated wood-based carbons: correlation between specific surface area and localization of molecular-sized pores. Holzforschung, 60, 85-92. DOI: 10.1515/HF.2006.015, 01/01/2006CrossrefGoogle Scholar

  • Ledin S., 1996. Willow wood properties, production and economy. Biomass Bioenerg., 11, 75-83. DOI: 10.1016/0961-9534(96)00022-0CrossrefGoogle Scholar

  • Lee J., Han S., Hyeon T., 2004. Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates. J. Mater. Chem., 14, 478-486. DOI: 10.1039/B311541KCrossrefGoogle Scholar

  • Li F., Wang Y., Wang D., Wei F., 2004. Characterization of single-wall carbon nanotubes by N2 adsorption. Carbon, 42, 2375-2383. DOI: 10.1016/j.carbon.2004.02.025CrossrefGoogle Scholar

  • Łukaszewicz J. P., Arcimowicz A., B. Klemp-Dyczek B., 2006. Patent application, Patent Office of Poland (registration number P 380164).Google Scholar

  • Łukaszewicz J. P., Wesołowski R. P., 2008. Fabrication of molecular-sieve-type carbon from Salix viminalis. Micropor. Mesopor. Mater., 116, 723-726. DOI: 10.1016/j.micromeso.2008.04.034CrossrefGoogle Scholar

  • Macías-García A., Díaz-Díez M. A., Gómez-Serrano V., Fernández González M. C., 2003. Preparation and characterization of activated carbons made up from different woods by chemical activation with H3PO4. Smart Mater. Struct., 12, N24-N28. DOI: 10.1088/0964-1726/12/6/N03CrossrefGoogle Scholar

  • Méndez, M. O. A., Lisbôa A. C. L., Coutinho A. R., Otani C., 2006. Activated petroleum coke for natural gas storage. J. Brazil. Chem. Soc., 17, 1144-1150. DOI: 10.1590/S0103-50532006000600011CrossrefGoogle Scholar

  • Mochida I., Yatsunami S., Kawabuchi Y., Nakayama Y., 1995. Influence of heat-treatment on the selective adsorption of CO2 in a model natural gas over molecular sieve carbons. Carbon, 33, 1611-1619. DOI: 10.1016/0008-6223(95)00124-VCrossrefGoogle Scholar

  • Mohamed A. R., Mohammadi M., Darzi G. N., 2010. Preparation of carbon molecular sieve from lignocellulosic biomass: A review. Renew. Sust. Energ. Rev., 14, 1591-1599. DOI: 10.1016/j.rser.2010.01.024CrossrefWeb of ScienceGoogle Scholar

  • Pastor-Villegas J., Pastor-Valle J. F., Meneses Rodriguez J. M., Garcia Garcia M., 2006. Study of commercial wood charcoals for the preparation of carbon adsorbents. J. Anal. Appl. Pyrol., 76, 103-108. DOI: 10.1016/j.jaap.2005.08.002CrossrefGoogle Scholar

  • Zanzi R., Bai X., Capdevila P., Björnbom E., 2001. Pyrolysis of biomass in presence of steam for preparation of activated carbon, liquid and gaseous products. Proc. 6th World Congress of Chemical Engineering, Melbourne, Australia 23-27 September 2001, 1-8.Google Scholar

  • Zhang T., Walawender W. P., Fan L. T., Fan M., Daugaard D., Brown R. C., 2004. Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chem. Eng. J., 105, 53-59. DOI: 10.1016/j.cej.2004.06.011CrossrefGoogle Scholar

  • Zhou O., Shimoda H., Gao B., Oh S., Fleming L., Yue G., 2002. Materials science of carbon nanotubes: Fabrication, integration, and properties of macroscopic structures of carbon nanotubes. Accounts Chem. Res., 35, 1045-1053. DOI: 10.1021/ar010162fCrossrefGoogle Scholar

About the article

Published Online: 2011-10-05

Published in Print: 2011-09-01

Citation Information: Chemical and Process Engineering, ISSN (Print) 0208-6425, DOI: https://doi.org/10.2478/v10176-011-0015-5.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Anna Ilnicka and Jerzy P. Lukaszewicz
Frontiers in Materials, 2015, Volume 2
Jin-Young Jung, Hye-Ryeon Yu, Se Jin In, Young Chul Choi, and Young-Seak Lee
Journal of Nanomaterials, 2013, Volume 2013, Page 1

Comments (0)

Please log in or register to comment.
Log in