Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical and Process Engineering

The Journal of Committee of Chemical and Process of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.971

CiteScore 2016: 1.03

SCImago Journal Rank (SJR) 2016: 0.395
Source Normalized Impact per Paper (SNIP) 2016: 0.873

Open Access
See all formats and pricing
More options …

Role of Acetone in the Formation of Highly Dispersed Cationic Polystyrene Nanoparticles

Lusi Ernawati
  • Hiroshima University, Department of Chemical Engineering, 1-4-1 Kagamiyama, Hiroshima 739-8527, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ratna Balgis
  • Hiroshima University, Department of Chemical Engineering, 1-4-1 Kagamiyama, Hiroshima 739-8527, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Takashi Ogi
  • Corresponding author
  • Hiroshima University, Department of Chemical Engineering, 1-4-1 Kagamiyama, Hiroshima 739-8527, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kikuo Okuyama
  • Hiroshima University, Department of Chemical Engineering, 1-4-1 Kagamiyama, Hiroshima 739-8527, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomonori Takada
Published Online: 2017-04-28 | DOI: https://doi.org/10.1515/cpe-2017-0002


A modified emulsion polymerisation synthesis route for preparing highly dispersed cationic polystyrene (PS) nanoparticles is reported. The combined use of 2,2′-azobis[2-(2-imidazolin- 2-yl)propane] di-hydrochloride (VA-044) as the initiator and acetone/water as the solvent medium afforded successful synthesis of cationic PS particles as small as 31 nm in diameter. A formation mechanism for the preparation of PS nanoparticles was proposed, whereby the occurrence of rapid acetone diffusion caused spontaneous rupture of emulsion droplets into smaller droplets. Additionally, acetone helped to reduce the surface tension and increase the solubility of styrene, thus inhibiting aggregation and coagulation among the particles. In contrast, VA-044 initiator could effectively regulate the stability of the PS nanoparticles including both the surface charge and size. Other reaction parameters i.e. VA-044 concentration and reaction time were examined to establish the optimum polymerisation conditions.

Keywords: diffusion; emulsion; nanoparticle; polystyrene; solubility


  • Abadi A.R.S., Darabi A., Jessop P.G. Cunningham M.F., 2015. Preparation of redispersible polymer latexes using cationic stabilizers based on 2-dimethylaminoethyl methacrylate hydrochloride 2,2′-azobis[2-(2-imidazolin-2 yl)propane]dihydrochloride. J. Polym., 60, 18. DOI:10.1016/j.polymer.2015.01.017.CrossrefGoogle Scholar

  • Balgis R., Anilkumar G.M., Sago S., Ogi T., Okuyama K., 2012. Nanostructured design of electrocatalyst support materials for high-performance PEM fuel cell application. J. Power Sources, 203, 26-33. DOI: 10.1016/j.jpowsour.2011.11.064.Web of ScienceCrossrefGoogle Scholar

  • Balgis R., Ogi T., Wang W. N., Anilkumar G. M., Sago S., Okuyama K., 2014. Aerosol synthesis of selforganized nanostructured hollow and porous carbon particles using a dual polymer system. Langmuir, 30, 11257-11262. DOI: 10.1021/la502545d.CrossrefGoogle Scholar

  • Beerbower A., 1971. Surface free energy: A new relationship to bulk energies. J. Colloid Interface Sci. 35, 126-132. DOI: 10.1016/0021-9797(71)90192-5.CrossrefGoogle Scholar

  • Camli S.T., Buyukserin F., Balci O., Budak G.G., 2010. Size controlled synthesis of sub-100 nm monodisperse poly(methylmethacrylate) nanoparticles using surfactant-free emulsion polymerization. J. Colloid Interface Sci., 344(2), 528-532, DOI: 10.1016/j.jcis.2010.01.041.Web of ScienceCrossrefGoogle Scholar

  • Chou C., Chiu W.Y., 2013. Novel Synthesis of Multi-Scaled, surfactant-free monodisperse latexes via alcoholic dispersion polymerization in a mixed ionic-nonionic initiation system. Macromolecules, 46, 3561-3569. DOI: 10.1021/ma400277s.Web of ScienceCrossrefGoogle Scholar

  • Chou I. C., Chen S. I., Chiu W. Y., 2014. Surfactant-free dispersion polymerization as an efficient synthesis route to a successful encapsulation of nanoparticles. RSC Adv., 4, 47436-47447. DOI: 10.1039/C4RA07475K.CrossrefWeb of ScienceGoogle Scholar

  • Ernawati, L., Ogi T., Balgis R., Okuyama K., Stucki M., Hess S. C., Stark W.J., 2016. Hollow silica as an optically transparent and thermally insulating polymer additive. Langmuir, 32, 338-345. DOI: 10.1021/acs.langmuir.5b04063.CrossrefWeb of ScienceGoogle Scholar

  • Ganachaud F., Katz J.L., 2005. Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices. Chem. PhysChem, 6, 209-216. DOI: 10.1002/cphc.200400527.CrossrefGoogle Scholar

  • Gradon L., Janeczko S., Abdullah M., Iskandar F., Okuyama K., 2004. Self-organization kinetics of mesoporous nanostructured particle. AIChE J., 50, 2583-2593. DOI:10.1002/aic.10257.CrossrefGoogle Scholar

  • Hansen C.M., 1969. The universality of the solubility parameter. Ind. Eng. Chem. Prod. Res. Dev., 8, 2-11. DOI: 10.1021/i360029a002.CrossrefGoogle Scholar

  • Hirschle P., Prei T., Auras F., Pick A., Völkner J., Valdepérez D., Witte G., Parak W. J., Rädler J. O., Wuttke S., 2016. Exploration of MOF nanoparticle sizes using various physical characterization methods is what you measure what you get. Cryst. Eng. Comm., 18, 4359-4368. DOI: 10.1039/c6ce00198j.CrossrefGoogle Scholar

  • Horn D., Rieger J., 2001. Organic nanoparticles in the aqueous phase-theory, experiment, and use. Angew. Chem. Int. Ed., 40, 4330-4361. DOI: 10.1002/1521-3773(20011203)40:23.CrossrefGoogle Scholar

  • Ishii H., Ishii M., Nagao D., Konno M., 2014. Advanced synthesis for monodisperse polymer nanoparticles in aqueous media with sub-millimolar surfactants. Polymer, 55, 2772-2779. DOI: 10.1016/j.polymer.2014.04.011.Web of ScienceCrossrefGoogle Scholar

  • Ito F., Ma G., Nagai M., Omi S., 2002. Study of particle growth by seeded emulsion polymerization accompanied by electrostatic coagulation. Colloids Surf. Physicochem. Eng. Asp. 201, 131-142. DOI: 10.1016/S0927-7757(01)01030-5.CrossrefGoogle Scholar

  • Kim, G., Lim, S., Lee, B.H., Shim, S.E., Choe, S., 2010. Effect of homogeneity of methanol/water/monomer mixture on the mode of polymerization of MMA: Soap-free emulsion polymerization versus dispersion polymerization. Polymer, 51, 1197-1205. DOI:10.1016/j.polymer.2009.12.038.CrossrefWeb of ScienceGoogle Scholar

  • Lee S.Y., Gradon L., Janeczko S., Iskandar F., Okuyama K., 2010. Formation of highly ordered nanostructures by drying micrometer colloidal droplets. ACS Nano, 4, 4717-4724. DOI: 10.1021/nn101297c15.Web of ScienceCrossrefGoogle Scholar

  • Legrand P., Lesieur S., Bochot A., Gref R., Raatjes W., Barratt G., 2007. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int. J. Pharm., 344, 33-43. DOI: 10.1016/j.ijpharm.2007.05.054.CrossrefWeb of ScienceGoogle Scholar

  • Li Zh., Cheng Z., Han H.C. C., 2012. Mechanism of narrowly dispersed latex formation in a surfactant-free emulsion polymerization of styrene in acetone-water mixture, Macromolecules, 45, 3231-3239. DOI: 10.1021/ma202535j.Web of ScienceCrossrefGoogle Scholar

  • Li L., Zhai T., Zeng H., Fang X., Bando Y., Golberg D., 2011. Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications. J Mater. Chem., 21, 40-56. DOI: 10.1039/C0JM02230F.CrossrefWeb of ScienceGoogle Scholar

  • Liu B., Zhang M., Cheng H., Fu Z., Zhou T., Chi H., Zhang H., 2014. Large-scale and narrow dispersed latex formation in batch emulsion polymerization of styrene in methanol-water solution. Colloid Polym. Sci., 292, 519-525. DOI: 10.1007/s00396-013-3113-8.CrossrefWeb of ScienceGoogle Scholar

  • Liu B., Sun S., Zhang M., Ren L., Zhang H., 2015. Facile synthesis of large scale and narrow particle size distribution polymer particles via control particle coagulation during one-step emulsion polymerization. Colloids Surf. Physicochem. Eng. Asp., 484, 81-88. DOI: 10.1016/j.colsurfa.2015.07.050. CrossrefGoogle Scholar

  • Liu Q., Li Y., Duan Y., Zhou H., 2012. Research progress on the preparation and application of monodisperse cationic polymer latex particles. Polym. Int., 61, 1593-1602. DOI: 10.1002/pi.4347.CrossrefWeb of ScienceGoogle Scholar

  • Liu Q., Tang Z., Zhou Z., Zhou H., Liao B., Shen S., Chen L., 2014. A novel route to prepare cationic polystyrene latex particles with monodispersity, J. Macromol. Sci. 51, 271-278. DOI:10.1080/10601325.2014.882683.CrossrefGoogle Scholar

  • Maiti A., Mc Grother S., 2004. Bead-bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension. J. Chem. Phys., 120, 1594. DOI: 10.1063/1.1630294.CrossrefGoogle Scholar

  • Nandiyanto A.B.D., Iskandar F., Okuyama. K., 2008. Nanosized polymer particle-facilitated preparation of mesoporous silica particles using a spray method. Chem. Lett., 37, 1040-1041. DOI:10.1246/cl.2008.1040.Web of ScienceCrossrefGoogle Scholar

  • Nandiyanto A.B.D., Suhendi A., Ogi T., Iwaki T., Okuyama K., 2012. Synthesis of additive-free cationic polystyrene particles with controllable size for hollow template applications. Colloids Surf. Physicochem. Eng. Asp., 396, 96-105. DOI: 10.1063/1.1630294.CrossrefGoogle Scholar

  • Nandiyanto A.B.D., Suhendi A., Ogi T., Umemoto R., Okuyama K., 2014. Size and charge controllable polystyrene spheres for templates in the preparation of porous silica particle with tunable internal hole configurations. Chem. Eng. J., 256, 421-430. DOI:10.1016/j.cej.2014.07.005.CrossrefGoogle Scholar

  • Natu A.M., Wiggins M., Van De Mark M.R., 2015. Synthesis and characterization of cationic colloidal unimolecular polymer (CUP) particles. Colloid Polym. Sci., 293, 1191-1204. DOI: 10.1007/s00396-015-3508-9.CrossrefWeb of ScienceGoogle Scholar

  • Ngai T., Wu C., 2005. Double roles of stabilization and destabilization of initiator potassium persulfate in surfactant-free emulsion polymerization of styrene under microwave irradiation, Langmuir, 21, 8520-8525. DOI: 10.1021/la0506630.CrossrefGoogle Scholar

  • Ogi T., Nandiyanto, A. B. D., Okuyama, K., 2014. Nanostructuring strategies in functional fine-particle synthesis towards resource and energy saving applications. Adv. Powder. Technol. 25, 3-17. DOI: 10.1016/j.apt.2013.11.005.Web of ScienceCrossrefGoogle Scholar

  • Okubo M., Yamada A., Shibao S., Nakamae K., Matsumoto T., 1981. Studies on suspension and emulsion. XLVI. Emulsifier-free emulsion polymerization of styrene in acetone-water. J. Appl. Polym. Sci., 26, 1675-1679. DOI: 10.1002/app.1981.070260522.CrossrefGoogle Scholar

  • Koenhen D. M., Smolders C. A., 1975. The determination of solubility parameters of solvents and polymers by means of correlations with other physical quantities. J. Appl. Polym. Sci., 19, 1163-1179. DOI: 10.1002/app.1975.070190423.CrossrefGoogle Scholar

  • Rao J. P., Geckeler K. E., 2011. Preparation techniques and size-control parameters. Prog.Polym. Sci., 36, 887-913. DOI:10.1016/j.apt.2013.11.005.CrossrefWeb of ScienceGoogle Scholar

  • Shibuya D., Nagao H., Ishii., Konno M., 2014. Advanced soap-free emulsion polymerization for highly pure, micron-sized, monodisperse polymer particles. Polymer, 55, 535-539. DOI:10.1016/j.polymer.2013.12.039.Web of ScienceCrossrefGoogle Scholar

  • Sood A., 2004. Particle size distribution control in emulsion polymerization. J. Appl. Polym. Sci., 92, 2884-2902. DOI: 10.1002/app.20231.CrossrefGoogle Scholar

  • Tadros T. F., 2013. Emulsion formation and stability. John Wiley & Sons. Google Scholar

About the article

Received: 2016-04-21

Revised: 2016-08-31

Accepted: 2016-09-13

Published Online: 2017-04-28

Published in Print: 2017-03-01

Citation Information: Chemical and Process Engineering, Volume 38, Issue 1, Pages 5–18, ISSN (Online) 2300-1925, DOI: https://doi.org/10.1515/cpe-2017-0002.

Export Citation

© Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Yong Lu, Kwok Shah, and Jianwei Xu
Polymers, 2017, Volume 9, Number 10, Page 506

Comments (0)

Please log in or register to comment.
Log in